Meshless Collocation: Error Estimates with Application to Dynamical Systems

نویسندگان

  • Peter Giesl
  • Holger Wendland
چکیده

In this paper, we derive error estimates for generalized interpolation, in particular collocation, in Sobolev spaces. We employ our estimates to collocation problems using radial basis functions and extend and improve previously known results for elliptic problems. Finally, we use meshless collocation to approximate Lyapunov functions for dynamical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence order estimates of meshless collocation methods using radial basis functions

We study meshless collocation methods using radial basis functions to approximate regular solutions of systems of equations with linear diier-ential or integral operators. Our method can be interpreted as one of the emerging meshless methods, cf. 1]. Its range of application is not conned to elliptic problems. However, the application to the boundary value problem for an elliptic operator, conn...

متن کامل

Stable and Convergent Unsymmetric Meshless Collocation Methods

In the theoretical part of this paper, we introduce a simplified proof technique for error bounds and convergence of a variation of E. Kansa’s well-known unsymmetric meshless collocation method. For a numerical implementation of the convergent variation, a previously proposed greedy technique is coupled with linear optimization. This algorithm allows a fully adaptive on-the-fly data-dependent m...

متن کامل

Solving the Laplace equation by meshless collocation using harmonic kernels

We present a meshless technique which can be seen as an alternative to the Method of Fundamental Solutions (MFS). It calculates homogeneous solutions of the Laplacian (i.e. harmonic functions) for given boundary data by a direct collocation technique on the boundary using kernels which are harmonic in two variables. In contrast to the MFS, there is no artifical boundary needed, and there is a f...

متن کامل

Special Techniques for Kernel-Based Reconstruction of Functions from Meshless Data

Here are three short stories on meshless methods using kernel techniques: • Any well–posed linear problem in the native space NΦ of a symmetric (strictly) positive definite kernel Φ can be successfully solved by symmetric meshless collocation. This applies to a large variety of standard linear PDE problems. • Relaxing interpolation conditions by allowing some small absolute error can significan...

متن کامل

Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2007