Multi-frequency phase retrieval from noisy data

نویسندگان

  • Vladimir Katkovnik
  • Karen Egiazarian
چکیده

The phase retrieval from multi-frequency intensity (power) observations is considered. The object to be reconstructed is complex-valued. A novel algorithm is presented that accomplishes both the object phase (absolute phase) retrieval and denoising for Poissonian and Gaussian measurements. The algorithm is derived from the maximum likelihood formulation with Block Matching 3D (BM3D) sparsity priors. These priors result in two filtering: one is in the complex domain for complexvalued multi-frequency object images and another one in the real domain for the object phase. The algorithm is iterative with alternating projections between the object and measurement variables. The simulation experiments are produced for Fourier transform image formation and random phase modulations of the object, then the observations are random object diffraction patterns. The results demonstrate the success of the algorithm for reconstruction of the complex phase objects with the highaccuracy performance even for very noisy data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realized Volatility in Noisy Prices: a MSRV approach

Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the...

متن کامل

Optimally adapted multi-state neural networks trained with noise

The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding...

متن کامل

Simultaneous deconvolution and phase retrieval from noisy data

In this work we present a new method for image reconstruction from the magnitude of its Fourier transform assuming availability of a blurred (low-resolution) version of the sought image. The method is based on convex optimization techniques that were previously considered impractical for the phase retrieval problem. However, experiments demonstrate that in case of noisy measurements, our method...

متن کامل

Phase retrieval from noisy data based on sparse approximation of object phase and amplitude

A variational approach to reconstruction of phase and amplitude of a complex-valued object from Poissonian intensity observations is developed. The observation model corresponds to the typical optical setups with a phase modulation of wavefronts. The transform domain sparsity is applied for the amplitude and phase modeling. It is demonstrated that this modeling results in the essential advantag...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018