Calcium Binding-Mediated Sustained Release of Minocycline from Hydrophilic Multilayer Coatings Targeting Infection and Inflammation

نویسندگان

  • Zhiling Zhang
  • Camilla A. Nix
  • Utku K. Ercan
  • Jonathan A. Gerstenhaber
  • Suresh G. Joshi
  • Yinghui Zhong
چکیده

Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca(2+) is less stable at acidic pH, enabling 'smart' drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca(2+) concentration, and Ca(2+) incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca(2+) binding affinity, enabling its use in a variety of biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications.

This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders...

متن کامل

Hydrophilic Natural Polymers for Sustained-controlled Release of Calcium Hydroxide

Calcium Hydroxide (CH) is commonly employed as intracanal medicament in endodontics. In order to maximize its therapeutic effects, it is essential to develop new approaches for preparing the controlled drug release systems which, in turn, facilities the dissociation of CH into calcium and hydroxyl ions. This work studies the sustained-controlled release of calcium ions and the effect of pH chan...

متن کامل

Hydrophilic Natural Polymers for Sustained-controlled Release of Calcium Hydroxide

Calcium Hydroxide (CH) is commonly employed as intracanal medicament in endodontics. In order to maximize its therapeutic effects, it is essential to develop new approaches for preparing the controlled drug release systems which, in turn, facilities the dissociation of CH into calcium and hydroxyl ions. This work studies the sustained-controlled release of calcium ions and the effect of pH chan...

متن کامل

Formulation, release and stability study of Bupropion sustained release 150 mg using Hydroxypropylmethylcellulose (HPMC) 4000cps basis

In this study,formulation of sustained-releasingmatrix tablet of bupropion 150 mg, using hydroxypropylmethylcellu lose(HPMC) 4000cps was evaluatedwith the aim of reducing the frequency of daily dose. The level of HPMC4000 ,polyvinylpyrolidone(PVP) and magnesium stearate(Mg St)was varied based on a 2level 3 factor factorial experimental designusing the release rate of the drug from the matrices ...

متن کامل

Synthesis and characterization of mPEG-PCL copolymers as a polymersomes for delivery of enalapril as a model hydrophilic drug

Purpose: Enalapril maleate (EPM), was used for hypertension and congestive heart failure. In this way, an innovative delivery system with mPEG–PCL was synthesized and the release profile of the EPM from the drug-loaded polymersomes was evaluated. Methods: Di-block methoxy)-poly (ethylene glycol) - Poly (caprolactone) (mPEG-PCL) copolymers were synthesized and used to prepare of polymersom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014