Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability.

نویسندگان

  • Marta Vallino
  • Valentina Fiorilli
  • Paola Bonfante
چکیده

Rice is mostly cultivated in wetlands, where arbuscular mycorrhization (AM) is reported to decrease. The mechanisms regulating such events are largely unknown. Rice uninoculated and inoculated with Rhizophagus irregularis were grown in dry and flooded conditions, allowing also for the transfer of plants from one water regime to the other. Roots were sampled at different times, from 7 to 35 d post-inoculation (dpi). The morphological and molecular parameters (root branching, aerenchyma formation, mycorrhizal colonization, AM marker gene expression) were evaluated. Root branching was more pronounced in dry conditions, and such phenotype was enhanced by the fungus. In wetlands, the colonization level was comparable till 21 dpi, when the mycorrhization then decreased, paralleled by an increase in aerenchyma. Expression of the fungal transporters was comparable under the two conditions. The root apparatus, when shifted from one water regime to the other, rapidly adapted to the new condition, revealing a marked plasticity. The reversibility of the AM rice symbiosis was also mirrored by expression changes of plant marker genes. The results demonstrate that the water regime is the driving force that regulates AM colonization under flooding conditions, by directly influencing root architecture and anatomy, but without impacting the basic AM functionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantificati...

متن کامل

Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus

Abundant data on the effect of flavonoids on spore germination, hyphal growth and root colonization by AMF are available. Moreover, the flavonoid pattern in mycorrhizal roots changes, thus flavonoids have been suggested as arbuscular mycorrhizal signalling compounds. In our work we studied the accumulation of flavonoids in roots of Medicago sativa i) after the exposure of uncolonized roots to s...

متن کامل

Bioprotection against Gaeumannomyces graminis in barley – a comparison between arbuscular mycorrhizal fungi

Gaeumannomyces graminis var. tritici causes take-all disease, the most important root disease of cereal plants. Cereal plants are able to form a symbiotic association with soil-borne arbuscular mycorrhizal fungi which can provide bioprotection against soil-borne fungal pathogens. However, the bioprotective effect of arbuscular mycorrhizal fungi against soil-borne fungal pathogens might vary. In...

متن کامل

Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively f...

متن کامل

Medicago truncatula Mtha1-2 mutants loose metabolic responses to mycorrhizal colonization

Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA1 In order to further characterize the imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 2014