Improved electrochemical stability at the surface of La(0.8)Sr(0.2)CoO3 achieved by surface chemical modification.
نویسندگان
چکیده
The degradation of the surface chemistry on perovskite (ABO3) oxides is a critical issue for their performance in energy conversion systems such as solid oxide fuel/electrolysis cells and in splitting of H2O and CO2 to produce fuels. This degradation is typically in the form of segregation and phase separation of dopant cations from the A-site, driven by elastic and electrostatic energy minimization and kinetic demixing. In this study, deposition of Ti at the surface was found to hinder the dopant segregation and the corresponding electrochemical degradation on a promising SOFC cathode material, La(0.8)Sr(0.2)CoO3 (LSC). The surface of the LSC films was modified by Ti (denoted as LSC-T) deposited from a TiCl4 solution. The LSC and LSC-T thin films were investigated by electrochemical impedance spectroscopy, nano-probe Auger electron spectroscopy, and X-ray photoelectron spectroscopy (XPS), upon annealing at 420-530 °C in air up to about 90 hours. The oxygen exchange coefficient, k(q), on LSC-T cathodes was found to be up to 8 times higher than that on LSC cathodes at 530 °C and retained its stability. Sr-rich insulating particles formed at the surface of the annealed LSC and LSC-T films, but with significantly less coverage of such particles on the LSC-T. From this result, it appears that modification of the LSC surface with Ti reduces the segregation of the blocking Sr-rich particles at the surface, and a larger area on LSC surface (with a higher Sr doping level in the lattice) is available for the oxygen reduction reaction. The stabilization of the LSC surface through Ti-deposition can open a new route for designing surface modifications on perovskite oxide electrodes for high temperature electro- and thermo-chemical applications.
منابع مشابه
Towards an Improved Understanding of Electrochemical Oxygen Exchange Reactions on Mixed Conducting Oxides
In solid oxide fuel cells or electrolysis cells with ionic and electronic conducting electrodes, the electrochemical reactions take place at the gas/solid interface of the mixed conducting electrode. This is in contrast to the situation met in aqueous electrolytes, where the reactions occur at the electrode/electrolyte interface. Thus, modified concepts are required to describe the reaction rat...
متن کاملLa(0.8)Sr(0.2)MnO(3-δ) decorated with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ): a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity.
Developing highly active and stable catalysts based on earth-abundant elements for oxygen electrocatalysis is critical to enable efficient energy storage and conversion. In this work, we took advantage of the high intrinsic oxygen reduction reaction (ORR) activity of La(0.8)Sr(0.2)MnO(3-δ) (LSMO) and the high intrinsic oxygen evolution reaction (OER) activity of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-...
متن کاملStability Modification of SPR Silver Nano-Chips by Alkaline Condensation of Aminopropyltriethoxysilane
The Silver SPR chip was modified by alkaline-silane condensation with aminopropyltriethoxysilane (APTES) in NaOH aqueous solution at different times. Silver sputtered slides coated with APTES were immersed in NaOH solution, enabling us to produce silver surfaces homogeneously covered with APTES. The surface properties of grafted APTES on sputtered silver surface as a occasion of time were studi...
متن کاملSome studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles
In the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigation...
متن کاملSome studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles
In the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 182 شماره
صفحات -
تاریخ انتشار 2015