Heterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species

نویسندگان

  • Yong-Jian Wang
  • Yun-Fei Bai
  • Shi-Qi Zeng
  • Bin Yao
  • Wen Wang
  • Fang-Li Luo
چکیده

Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration between congeneric invasive and native Hydrocotyle species. In a greenhouse experiment, we subjected severed or no severed (intact) fragments of Hydrocotyle vulgaris, a highly invasive species in China, and its co-existing, native congener H. sibthorpioides to different spatial patchiness (homogeneous and patchy) and temporal interval (low and high interval) in water supply. Clonal integration had significant positive effects on growth of both species. In the homogeneous water conditions, clonal integration greatly improved the growth in fragments of both species under low interval in water. However, in the patchy water conditions, clonal integration significantly increased growth in both ramets and fragments of H. vulgaris under high interval in water. Therefore, spatial patchiness and temporal interval in water altered the effects of clonal integration of both species, especially for H. vulgaris. The adaptation of H. vulgaris might lead to invasive growth and potential spread under the global water variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more...

متن کامل

Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability

Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections e...

متن کامل

Short-term fitness benefits of physiological integration in the clonal herb Hydrocotyle peduncularis

We test whether physiological integration enhances the short-term fitness of the clonal herb Hydrocotyle peduncularis (Apiaceae, R. Brown ex A. Richards) subjected to spatial variation in water availability. Our measures of fitness and costs and benefits are based on the relative growth rate of fragmented genets. Physiological integration over a gradient in soil moisture resulted in a highly si...

متن کامل

The invasive stoloniferous clonal plant Alternanthera philoxeroides outperforms its co-occurring non-invasive functional counterparts in heterogeneous soil environments – invasion implications

Environmental heterogeneity is considered to play a defining role in promoting invasion success, and it favours clonal plants. Although clonality has been demonstrated to be correlated with the invasion success of several species of clonal invasive plants in heterogeneous environments, little is known about how the spatial scale of heterogeneity affects their performance. In addition, the facto...

متن کامل

Invasive forb benefits from water savings by native plants and carbon fertilization under elevated CO2 and warming.

As global changes reorganize plant communities, invasive plants may benefit. We hypothesized that elevated CO2 and warming would strongly influence invasive species success in a semi-arid grassland, as a result of both direct and water-mediated indirect effects. To test this hypothesis, we transplanted the invasive forb Linaria dalmatica into mixed-grass prairie treated with free-air CO2 enrich...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016