General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy.
نویسندگان
چکیده
Nanocharacterization is essential for nanoengineering of new types of core-shell (c-s) nanoparticles, which can be used to design new devices for photonics, electronics, catalysis, medicine, etc. X-ray photoelectron spectroscopy (XPS) has been widely used to study the elemental composition of the c-s nanoparticles. However, the physical and chemical properties of a c-s nanoparticle dramatically depend on the sizes of its core and shell. We therefore propose a general equation for the XPS intensity of a c-s nanoparticle, which is based on an analytical model. With this equation, XPS can now also be used for nanocharacterization of the core and shell sizes of the c-s nanoparticles (with a diameter smaller than or equal to the XPS probing depth of approximately 10 nm). To validate the new equation with experimental XPS data, we first determine the average shell thickness of a group of c-s nanoparticles by comparing the XPS intensity of reference bare cores to that of the c-s nanoparticles. Then we study the growth kinetics of the cores and shells of another group of c-s nanoparticles where the shells are obtained by oxidation.
منابع مشابه
Photocatalytic Coating Using Titania-Silica Core/Shell Nanoparticles
The photocatalytic coatings were prepared via incorporating the modified titania nanoparticles into epoxy-based inorganic-organic hybrid coatings. Titania nanoparticles were first synthesized from tetra-n-butyl titanate using sol-gel methods by two different calcination treatments, i.e., in mild condition (80°C) and 500°C. The formed anatase nanoparticles were further modified as Titania-Silica...
متن کاملPhotocatalytic Coating Using Titania-Silica Core/Shell Nanoparticles
The photocatalytic coatings were prepared via incorporating the modified titania nanoparticles into epoxy-based inorganic-organic hybrid coatings. Titania nanoparticles were first synthesized from tetra-n-butyl titanate using sol-gel methods by two different calcination treatments, i.e., in mild condition (80°C) and 500°C. The formed anatase nanoparticles were further modified as Titania-Silica...
متن کاملNi@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
متن کاملCore-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection
In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays...
متن کاملSynthesis and Characterization of Core-shell ZrO2/PAAEM/PS Nanoparticles
This work demonstrates the synthesis of core-shell ZrO2/PAAEM/PS nanoparticles through a combination of sol-gel method and emulsifier-free emulsion polymerizaiton. By this method, the modified nanometer ZrO2cores were prepared by chemical modification at a molecular level of zirconium propoxide with monomer of acetoacetoxyethylmethacrylate (AAEM), and then copolymerized with vinyl monomer to fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 18 شماره
صفحات -
تاریخ انتشار 2005