NOAA/NGDC candidate models for the 11th generation International Geomagnetic Reference Field and the concurrent release of the 6th generation Pomme magnetic model
نویسندگان
چکیده
The International Geomagnetic Reference Field (IGRF) is updated every five years based on candidate model submissions by research institutions worldwide. In the call for the 11th generation of IGRF, candidates were requested for the definitive main field in 2005, the predicted main field in 2010, and the predicted secular variation from 2010 to 2015. The NOAA/NGDC candidate models for IGRF-11 were produced from parent models parameterized in the same way as the 6th generation of our Pomme magnetic model. All models were based on CHAMP satellite measurements, while Ørsted satellite measurements were used for model validation. The internal field in Pomme-6 is described by a 2nd degree Taylor time series of spherical harmonic expansion coefficients of a scalar magnetic potential. Magnetic fields of ionospheric origin are avoided by careful data selection. Instead of co-estimating magnetospheric fields, we subtract a magnetospheric field model estimated previously from a more extensive data set covering all local times. From comparison with Ørsted measurements and general considerations of magnetic field predictability, we attribute a root mean square (RMS) uncertainty of 1.3 nT to our candidate model for the main field in 2005, 2.5 nT to the predicted main field in 2010 and 26 nT/a to the predicted secular variation from 2010 to 2015.
منابع مشابه
Third generation of the Potsdam Magnetic Model of the Earth (POMME)
[1] The Potsdam Magnetic Model of the Earth (POMME) is a geomagnetic field model providing an estimate of the Earth’s core, crustal, magnetospheric, and induced magnetic fields. The internal field is represented to spherical harmonic (SH) degree 90, while the secular variation and acceleration are given to SH degree 16. Static and time-varying magnetospheric fields are parameterized in Geocentr...
متن کاملMagnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude-Heading Reference Systems
In a strapdown magnetic compass, heading angle is estimated using the Earth's magnetic field measured by Three-Axis Magnetometers (TAM). However, due to several inevitable errors in the magnetic system, such as sensitivity errors, non-orthogonal and misalignment errors, hard iron and soft iron errors, measurement noises and local magnetic fields, there are large error between the magnetometers'...
متن کاملGeneration of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملبررسی اثر تغییرات گام زمانی در مدلهای پیش بینی امواج در دریاچه ارومیه
Development of advanced spectral wind wave models has been the subject of comprehensive researches which has led to reliable wave predictions for assessing the impact of waves on the natural environment, coastal protection, offshore structures and harbor over the past two decades. On the other hand, the Geographical Information Systems (GIS) are developed for working with geographical data whic...
متن کاملEntropy generation analysis of MHD forced convective flow through a horizontal porous channel
Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...
متن کامل