Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function.
نویسندگان
چکیده
HBV cccDNA, the template for transcription of all viral mRNAs, accumulates in the nucleus of infected cells as a stable episome organized into minichromosomes by histones and non-histone viral and cellular proteins. Using a cccDNA-specific chromatin immunoprecipitation (ChIP)-based quantitative assay, we have previously shown that transcription of the HBV minichromosome is regulated by epigenetic changes of cccDNA-bound histones and that modulation of the acetylation status of cccDNA-bound H3/H4 histones impacts on HBV replication. We now show that the cellular histone acetyltransferases CBP, p300, and PCAF/GCN5, and the histone deacetylases HDAC1 and hSirt1 are all recruited in vivo onto the cccDNA. We also found that the HBx regulatory protein produced in HBV replicating cells is recruited onto the cccDNA minichromosome, and the kinetics of HBx recruitment on the cccDNA parallels the HBV replication. As expected, an HBV mutant that does not express HBx is impaired in its replication, and exogenously expressed HBx transcomplements the replication defects. p300 recruitment is severely impaired, and cccDNA-bound histones are rapidly hypoacetylated in cells replicating the HBx mutant, whereas the recruitment of the histone deacetylases hSirt1 and HDAC1 is increased and occurs at earlier times. Finally, HBx mutant cccDNA transcribes significantly less pgRNA. Altogether our results further support the existence of a complex network of epigenetic events that influence cccDNA function and HBV replication and identify an epigenetic mechanism (i.e., to prevent cccDNA deacetylation) by which HBx controls HBV replication.
منابع مشابه
IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome.
HBV infection remains a leading cause of death worldwide. IFN-α inhibits viral replication in vitro and in vivo, and pegylated IFN-α is a commonly administered treatment for individuals infected with HBV. The HBV genome contains a typical IFN-stimulated response element (ISRE), but the molecular mechanisms by which IFN-α suppresses HBV replication have not been established in relevant experimen...
متن کاملRegulation of hepatitis B virus replication by epigenetic mechanisms and microRNAs
The hepatitis B virus (HBV) genome forms a covalently closed circular DNA (cccDNA) minichromosome that persists in the nucleus of virus-infected hepatocytes. HBV cccDNA serves as the template for viral mRNA synthesis and is subject to epigenetic regulation by several mechanisms, including DNA methylation and histone acetylation. Recently, microRNAs (miRNAs), a class of small non-coding RNAs, we...
متن کاملThe Epigenetic Control of Hepatitis B Virus Modulates the Outcome of Infection
Epigenetic modifications are stable alterations in gene expression that do not involve mutations of the genetic sequence itself. It has become increasingly clear that epigenetic factors contribute to the outcome of chronic hepatitis B virus (HBV) infection by affecting cellular and virion gene expression, viral replication and the development of hepatocellular carcinoma. HBV persists in the nuc...
متن کاملThe Tudor Domain Protein Spindlin1 Is Involved in Intrinsic Antiviral Defense against Incoming Hepatitis B Virus and Herpes Simplex Virus Type 1
Hepatitis B virus infection (HBV) is a major risk factor for the development of hepatocellular carcinoma. HBV replicates from a covalently closed circular DNA (cccDNA) that remains as an episome within the nucleus of infected cells and serves as a template for the transcription of HBV RNAs. The regulatory protein HBx has been shown to be essential for cccDNA transcription in the context of infe...
متن کاملIL6 Inhibits HBV Transcription by Targeting the Epigenetic Control of the Nuclear cccDNA Minichromosome
The HBV covalently closed circular DNA (cccDNA) is organized as a mini-chromosome in the nuclei of infected hepatocytes by histone and non-histone proteins. Transcription from the cccDNA of the RNA replicative intermediate termed pre-genome (pgRNA), is the critical step for genome amplification and ultimately determines the rate of HBV replication. Multiple evidences suggest that cccDNA epigene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 47 شماره
صفحات -
تاریخ انتشار 2009