The effect of thermal dose on hyperthermia-mediated inhibition of DNA repair through homologous recombination

نویسندگان

  • Nathalie van den Tempel
  • Charlie Laffeber
  • Hanny Odijk
  • Wiggert A. van Cappellen
  • Gerard C. van Rhoon
  • Martine Franckena
  • Roland Kanaar
چکیده

Hyperthermia has a number of biological effects that sensitize tumors to radiotherapy in the range between 40-44 °C. One of these effects is heat-induced degradation of BRCA2 that in turn causes reduced RAD51 focus formation, which results in an attenuation of DNA repair through homologous recombination. Prompted by this molecular insight into how hyperthermia attenuates homologous recombination, we now quantitatively explore time and temperature dynamics of hyperthermia on BRCA2 levels and RAD51 focus formation in cell culture models, and link this to their clonogenic survival capacity after irradiation (0-6 Gy). For treatment temperatures above 41 °C, we found a decrease in cell survival, an increase in sensitization towards irradiation, a decrease of BRCA2 protein levels, and altered RAD51 focus formation. When the temperatures exceeded 43 °C, we found that hyperthermia alone killed more cells directly, and that processes other than homologous recombination were affected by the heat. This study demonstrates that optimal inhibition of HR is achieved by subjecting cells to hyperthermia at 41-43 °C for 30 to 60 minutes. Our data provides a guideline for the clinical application of novel combination treatments that could exploit hyperthermia's attenuation of homologous recombination, such as the combination of hyperthermia with PARP-inhibitors for non-BRCA mutations carriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Hyperthermia inhibits recombination repair of gemcitabine-stalled replication forks.

BACKGROUND Gemcitabine is a potent nucleoside analogue against solid tumors, but development of drug resistance is a substantial problem. Removal of gemcitabine incorporated into DNA by repair mechanisms may contribute to resistance in chemo-refractory solid tumors. Human hepatocellular carcinoma (HCC) is usually very chemoresistant to gemcitabine. METHODS We treated HCC in vitro and in vivo ...

متن کامل

Hyperthermia-induced radiosensitization in CHO wild-type, NHEJ repair mutant and HR repair mutant following proton and carbon-ion exposure

The DNA repair mechanisms involved in hyperthermia-induced radiosensitization with proton and carbon ion radiation exposure were investigated in the present study. In a previous study, Chinese hamster ovary (CHO) cells were exposed to low linear energy transfer (LET) photon radiation. These cells can be sensitized by hyperthermia as a result of inhibition of homologous recombination (HR) repair...

متن کامل

Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effe...

متن کامل

Effects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells

Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017