A convenient phase transfer protocol to functionalize gold nanoparticles with short alkylamine ligands.

نویسندگان

  • Guang Yang
  • Wen-Sheng Chang
  • Daniel T Hallinan
چکیده

HYPOTHESIS Aqueous citrate-stabilized gold nanoparticles (Au NPs) cannot be directly transferred from water to an immiscible organic solution using short alkyl ligands. However, Au NPs can be transferred from water to a water-organic interface if chemical and mechanical inputs are used to modify the interfacial energy and interfacial area. Ligand exchange can then take place at this interface. After separating the particles from the liquids, they can be transferred to a different organic phase. EXPERIMENTS Hexane, alkylamine, and acetone were added to aqueous citrate-stabilized Au NPs to form a film at the system interfaces. After removing the liquid phases, Au NPs were readily redispersed into tetrahydrofuran (THF). The size and shape of the transferred Au NPs were evaluated by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). FINDINGS Au NPs with 13nm diameter are readily segregated from water with the aid of short alkylamine ligands. They form a thin film at the water/organic solvent interface, rendering them easy to separate from the liquid phases and possible to redisperse into another organic solvent. After the phase transfer process, Au NPs were functionalized with short amine ligands. In addition, the shape and size of Au NPs were preserved. The short amine-protected Au NPs in THF can stay stable for up to 27days or longer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A technique to functionalize and self-assemble macroscopic nanoparticle-ligand monolayer films onto template-free substrates.

This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the na...

متن کامل

Reversible phase transfer of quantum dots and metal nanoparticles.

A general, reversible phase transfer protocol was demonstrated for quantum dots and metal nanoparticles. The protocol involves ligand exchange based transfer of nanoparticles from organic medium to aqueous phase, followed by electrostatic interaction based reversible transfer of nanoparticles between aqueous and organic phases.

متن کامل

Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands.

At present, thiol ligands are generally used whenever the classical Brust-Schiffrin two-phase method is employed to prepare metal nanoparticles. In general, the previous research was mainly focused on utilizing small molecular thiol compounds or thiol polymers as the stabilizers in organic phase to obtain small sized and uniform gold nanoparticles (Au NPs). Such preparations are usually associa...

متن کامل

Rapid Cationization of Gold Nanoparticles by Two-Step Phase Transfer.

Cationic gold nanoparticles offer intriguing opportunities as drug carriers and building blocks for self-assembled systems. Despite major progress on gold nanoparticle research in general, the synthesis of cationic gold particles larger than 5 nm remains a major challenge, although these species would give a significantly larger plasmonic response compared to smaller cationic gold nanoparticles...

متن کامل

Enhanced cellular uptake of amphiphilic gold nanoparticles with ester functionality.

Gold nanoparticles (AuNPs) coated with ester-headed or ether-headed PEG ligands were synthesized. Ester-headed AuNPs, but not ether-headed, were transferred from the organic phase (CH2Cl2) to the alkali aqueous phase, indicating that the hydrolysis of the ester moiety triggered the phase transfer of the AuNPs. We found that AuNPs with ester-headed ligands (ester-AuNPs) were internalized into He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 460  شماره 

صفحات  -

تاریخ انتشار 2015