miRNA143 Induces K562 Cell Apoptosis Through Downregulating BCR-ABL
نویسندگان
چکیده
BACKGROUND Leukemia seriously threats human health and life. MicroRNA regulates cell growth, proliferation, apoptosis, and cell cycle. Whether microRNA could be treated as a target for leukemia is still unclear and the mechanism by which microRNA143 regulates K562 cells needs further investigation. MATERIAL AND METHODS miRNA143 and its scramble miRNA were synthesized and transfected to K562 cells. MTT assay was used to detect K562 cell proliferation. Flow cytometry and a caspase-3 activity detection kit were used to test K562 cell apoptosis. Western blot analysis was performed to determine breakpoint cluster region-Abelson (BCR-ABL) expression. BCR-ABL overexpression and siRNA were used to change BCR-ABL level, and cell apoptosis was detected again after lipofection transfection. RESULTS miRNA143 transfection inhibited K562 cell growth and induced its apoptosis. miRNA143 transfection decreased BCR-ABL expression. BCR-ABL overexpression suppressed miRNA143-induced K562 cell apoptosis, while its reduction enhanced miRNA143-induced apoptosis. CONCLUSIONS miRNA143 induced K562 cell apoptosis through downregulating BCR-ABL. miRNA143 might be a target for a new leukemia therapy.
منابع مشابه
Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملBMI‑1 is important in bufalin‑induced apoptosis of K562 cells.
The purpose of this study was to analyze the effects of bufalin on the gene expression of K562 cells and on the expression of BMI‑1 pathway constituents in K562 cell apoptosis. K562 cells were treated with bufalin, and the inhibition rate and apoptosis were detected by an MTT assay, flow cytometry and a microarray assay. BMI‑1, p16INK4a and p14ARF were examined by quantitative polymerase chain ...
متن کاملhsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide
The aim of this study was to investigate the effect of a eukaryotic expression vector expressing hsa-miR-203 on the sensitivity of K562 leukemia cells to arsenic trioxide (ATO) and the possible mechanism of action. The eukaryotic expression vector expressing the hsa-miR-203 plasmid (PmiR-203) was transfected into K562 cells using Lipofectamine 2000. bcr/abl 3' untranslated region (UTR) and bcr/...
متن کاملبررسی اثر HESA-A بر تکثیر و آپوپتوز رده سلولی لوسمی میلوژن مزمن(K562)
Background and Aim: Chronic myelogenous leukemia is characterized by Philadelphia (Ph) chromosome, the presence of BCR-ABL fusion gene and constitutive activation of the ABL1 tyrosine kinase. Despite an excellent result of target therapy by imatinib, some patients develop resistance to imatinib. In this study Efficacy of HESA-A on proliferation and apoptosis of K562 cell line was assessed. Mat...
متن کاملChlorogenic acid inhibits Bcr-Abl tyrosine kinase and triggers p38 mitogen-activated protein kinase-dependent apoptosis in chronic myelogenous leukemic cells.
We report that chlorogenic acid (Chl) induces apoptosis of several Bcr-Abl-positive chronic myelogenous leukemia (CML) cell lines and primary cells from CML patients in vitro and destroys Bcr-Abl-positive K562 cells in vivo. In contrast, this compound has no effect on the growth and viability of Bcr-Abl-negative lymphocytic and myeloid cell lines and primary CML cells. Sodium chlorogenate (NaCh...
متن کامل