Wee1-dependent mechanisms required for coordination of cell growth and cell division.
نویسنده
چکیده
Wee1-related kinases function in a highly conserved mechanism that controls the timing of entry into mitosis. Loss of Wee1 function causes fission yeast and budding yeast cells to enter mitosis before sufficient growth has occurred, leading to formation of daughter cells that are smaller than normal. Early work in fission yeast suggested that Wee1 is part of a cell-size checkpoint that prevents entry into mitosis before cells have reached a critical size. Recent experiments in fission yeast and budding yeast have provided new support for this idea. In addition, studies in budding yeast have revealed the existence of highly intricate signaling networks that are required for regulation of Swe1, the budding yeast homolog of Wee1. Further understanding of these signaling networks may provide important clues to how cell growth and cell division are coordinated.
منابع مشابه
Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint.
Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. W...
متن کاملArabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint W OA
Upon the incidence of DNA stress, the ataxia telangiectasia–mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. W...
متن کاملDrosophila Wee1 Kinase Regulates Cdk1 and Mitotic Entry during Embryogenesis
Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature...
متن کاملCompartmentalized nodes control mitotic entry signaling in fission yeast
Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions bet...
متن کاملEvaluation of Pharmacological Activity of Heterobimetallic Coordination Compounds Containing N, N-Bis (2-hydroxyethyl)-Ethylenediamine on HT29, HeLa, C6 and Vero cells
The present study was conducted in order to investigate the pharmacological activities of three heterobimetallic coordination compounds: [Cd(N-bishydeten)2][Ni(CN)4] (C1), [Cu2(N-bishydeten)2Co(CN)6].3H2O (C2), and K[Cd(N-bishydeten)Co(CN)6].1.5H2O (C3) (N-bishydeten = N,N-bis(2-hydroxyethyl)-ethylenediamine). This paper describes the ability of complexes to inhibit cell growth, cell migration ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 116 Pt 24 شماره
صفحات -
تاریخ انتشار 2003