Absorbing-state phase transitions with extremal dynamics.
نویسندگان
چکیده
Extremal dynamics represents a path to self-organized criticality in which the order parameter is tuned to a value of zero. The order parameter is associated with a phase transition to an absorbing state. Given a process that exhibits a phase transition to an absorbing state, we define an "extremal absorbing" process, providing the link to the associated extremal (nonabsorbing) process. Stationary properties of the latter correspond to those at the absorbing-state phase transition in the former. Studying the absorbing version of an extremal dynamics model allows to determine certain critical exponents that are not otherwise accessible. In the case of the Bak-Sneppen (BS) model, the absorbing version is closely related to the "f -avalanche" introduced by Paczuski, Maslov, and Bak [Phys. Rev. E 53, 414 (1996)], or, in spreading simulations to the "BS branching process" also studied by these authors. The corresponding nonextremal process belongs to the directed percolation universality class. We revisit the absorbing BS model, obtaining refined estimates for the threshold and critical exponents in one dimension. We also study an extremal version of the usual contact process, using mean-field theory and simulation. The extremal condition slows the spread of activity and modifies the critical behavior radically, defining an "extremal directed percolation" universality class of absorbing-state phase transitions. Asymmetric updating is a relevant perturbation for this class, even though it is irrelevant for the corresponding nonextremal class.
منابع مشابه
Paths to Self-Organized Criticality
We present a pedagogical introduction to self-organized criticality (SOC), unraveling its connections with nonequilibrium phase transitions. There are several paths from a conventional critical point to SOC. They begin with an absorbing-state phase transition (directed percolation is a familiar example), and impose supervision or driving on the system; two commonly used methods are extremal dyn...
متن کاملInfinitely-Many Absorbing-State Nonequilibrium Phase Transitions
We present a general field-theoretic strategy to analyze three connected families of continuous phase transitions which occur in nonequilibrium steady-states. We focus on transitions taking place between an active state and one absorbing state, when there exist an infinite number of such absorbing states. In such transitions the order parameter is coupled to an auxiliary field. Three situations...
متن کاملAbsorbing-state phase transitions in fixed-energy sandpiles
We study sandpile models as closed systems, with the conserved energy density zeta playing the role of an external parameter. The critical energy density zeta(c) marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient properties, as well as the dynamics of roughening in an interf...
متن کاملInterface depinning versus absorbing-state phase transitions.
According to recent numerical results from lattice models, the critical exponents of systems with many absorbing states and order parameter coupled to a nondiffusive conserved field coincide with those of the linear interface depinning model within computational accuracy. In this paper the connection between absorbing-state phase transitions and interface pinning in quenched disordered media is...
متن کامل2 0 M ay 1 99 7 Phase Transitions in a Probabilistic Cellular Automaton with Two Absorbing States
We study the phase diagram and the critical behavior of a one-dimensional radius-1 two-state totalistic probabilistic cellular automaton having two absorbing states. This system exhibits a first-order phase transition between the fully occupied state and the empty state, two secondorder phase transitions between a partially occupied state and either the fully occupied state or the empty state, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 71 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2005