Mechanism of superoxide dismutase-like activity of Fe(II) and Fe(III) complexes of tetrakis-N,N,N',N'(2-pyridylmethyl)ethylenediamine.
نویسندگان
چکیده
The superoxide dismutase (SOD) activity of iron(II) tetrakis-N,N,N',N'(2-pyridylmethyl)ethylenediamine complex (Fe-TPEN) was reexamined using a pulse radiolysis method. In our previous study (J. Biol. Chem., 264, 9243-9249 (1989)), we reported that this complex has a potent SOD activity in a cyt. c (cytochrome c)-based system (IC50 = 0.8 microM) and protects E. coli cells against paraquat toxicity. The present pulse radiolysis experiment revealed that Fe(II)TPEN reacts stoichiometrically with superoxide to form Fe(III)TPEN with a second-order rate constant of 3.9 x 10(6) M-1 S-1 at pH 7.1, but superoxide did not reduce Fe(III)TPEN to Fe(II)TPEN. The reaction of Fe(III)TPEN and superoxide was biphasic. In the fast reaction, an adduct (Fe(III)TPEN-superoxide complex) was formed at the second-order rate constant of 8.5 x 10(5) M-1 S-1 at pH 7.4. In the slow one, the adduct reacted with another molecule of the adduct, regenerating Fe(III)TPEN. In the cyt. c method with catalase, this Fe(III)TPEN-superoxide complex showed cyt. c oxidation activity, which had led to overestimation of its SOD activity. Based on the titration data, the main species of complex in aqueous media at neutral pH was indicated to be Fe(III)TPEN(OH-). A spectral change after the reduction with hydrated electron indicates that the OH- ion coordinates directly to Fe(III) by displacing one of the pyridine rings. The X-ray analysis of [Fe(II)TPEN]SO4 supported this structure. From the above results we propose a novel reaction mechanism of FeTPEN and superoxide which resembles a proton catalyzed dismuting process, involving Fe(III)TPEN-superoxide complex.
منابع مشابه
Synthesis and Antioxidant Activities of [5-fluoro N, N'-bis (salicylidene) ethylenediamine] and [3, 5-fluoro N, N'-bis (salicylidene) ethylenediamine] Manganese (III) Complexes
Antioxidants act as free radical scavengers in the oxidation processes. Thus, they will certainly play diverse roles in the biological systems and the therapy of a wide variety of diseases. Regarding this fact, in the present study, we synthesized two new salen ligand compounds by the condensation of ethylendiamine and salicylaldehyde derivatives in excellent yields.The structures of ...
متن کاملAnti-tumor activity of Fe (III), Co(II) and Pd(II) complexes of N3-{phenyl [(4-pyridylcarbonyl)amino]methyl}
An anti-tumor compound as N3-{phenyl [(4-pyridylcarbonyl) amino] methyl} weresynthesized and identified (NPPA). Fe (III), Co(II) and Pd(II) metal complexes of this ligand preparedby reaction of chloride salt of Fe (III), Co(II) and Pd(II) with NPPA in dry acetonitrile. Identification andCharacterization of the ligand was performed by FT-IR, 1H-NMR spectroscopy and elemental an...
متن کاملMetal-Dependent SOD Mimics
Superoxide dismutase is an important antioxidant to control the free radical reactions related to superoxide generated in biological system. However, its large molecule and short lifespan in vivo limit its clinical use. Extensive studies have been carried out to find the suitable SOD-mimics to substitute it. In order to acts as SOD mimics, a compound should be non-toxic, stable, easy to reach i...
متن کاملMononuclear iron complexes relevant to nonheme iron oxygenases. Synthesis, characterizations and reactivity of Fe-Oxo and Fe-Peroxo intermediates.
The new ligand L(6)(2)4E (N,N,N',N'-tetrakis(5-ethyl-2-pyridylmethyl)ethane-1,2-diamine) was designed as a more robust analog of TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine) for which the ability at stabilizing high valent Fe-Oxo and Fe-(hydro)peroxo has been reported. With respect to the latter, the pyridyl beta-substituents in L(6)(2)4E do not modify the Fe coordination chemis...
متن کاملMononuclear Fe(II)-N4Py complexes in oxidative DNA cleavage: structure, activity and mechanism.
A series of monotopic N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine, 1) derived ligands have been prepared and evaluated in the iron catalyzed oxidative cleavage of pUC18 DNA, in the presence and absence of external reducing agent DTT. The mononuclear iron(II) complexes induce efficient DNA cleavage in air with a low catalyst loading. It was demonstrated that covalent attachment of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical & pharmaceutical bulletin
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2000