Decoupled genomic elements and the evolution of partner quality in nitrogen‐fixing rhizobia
نویسندگان
چکیده
Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long-term impacts of global changes, such as increased N (nitrogen) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or HGT (horizontal gene transfer). In a previous work using the legume/rhizobia mutualism, we demonstrated that long-term nitrogen fertilization caused the evolution of less-mutualistic rhizobia. Here, we use our 63 previously isolated rhizobium strains in comparative phylogenetic and quantitative genetic analyses to determine the degree to which variation in partner quality is attributable to phylogenetic relationships among strains versus recent genetic changes in response to N fertilization. We find evidence of distinct evolutionary relationships between chromosomal and pSym genes, and broad similarity between pSym genes. We also find that nifD has a unique evolutionary history that explains much of the variation in partner quality, and suggest MoFe subunit interaction sites in the evolution of less-mutualistic rhizobia. These results provide insight into the mechanisms behind the evolutionary response of rhizobia to long-term N fertilization, and we discuss the implications of our results for the evolution of the mutualism.
منابع مشابه
Ecological genomics of mutualism decline in nitrogen-fixing bacteria.
Anthropogenic changes can influence mutualism evolution; however, the genomic regions underpinning mutualism that are most affected by environmental change are generally unknown, even in well-studied model mutualisms like the interaction between legumes and their nitrogen (N)-fixing rhizobia. Such genomic information can shed light on the agents and targets of selection maintaining cooperation ...
متن کاملCopyright 2015 Benjamin R. Gordon THE INFLUENCE OF LONG-TERM NITROGEN FERTILIZATION ON SYMBIOSIS AND METABOLISM IN THE LEGUME-RHIZOBIUM MUTUALISM BY
Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long-term impacts of global changes, such as increased nitrogen (N) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or horizontal gene transfer (HGT). ...
متن کاملHerbivory eliminates fitness costs of mutualism exploiters.
A common empirical observation in mutualistic interactions is the persistence of variation in partner quality and, in particular, the persistence of exploitative phenotypes. For mutualisms between hosts and symbionts, most mutualism theory assumes that exploiters always impose fitness costs on their host. We exposed legume hosts to mutualistic (nitrogen-fixing) and exploitative (non-nitrogen-fi...
متن کاملGenomes of the symbiotic nitrogen-fixing bacteria of legumes.
Over the last several decades, there have been a large number of studies done on the genetics, biochemistry, physiology, ecology, and agronomics of the bacteria forming nitrogen-fixing symbioses with legumes. These bacteria, collectively referred to as the rhizobia, are taxonomically and physiologically diverse members of the a and b subclasses of the Proteobacteria, and mostly comprise members...
متن کاملEvolutionary Dynamics of Nitrogen Fixation in the Legume–Rhizobia Symbiosis
The stabilization of host-symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environmen...
متن کامل