Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis.
نویسندگان
چکیده
Previous work has shown that the posteriorising agent retinoic acid can accelerate anterior neuronal differentiation in Xenopus laevis embryos (Papalopulu, N. and Kintner, C. (1996) Development 122, 3409-3418). To elucidate the role of retinoic acid in the primary neurogenesis cascade, we investigated whether retinoic acid treatment of whole embryos could change the spatial expression of a set of genes known to be involved in neurogenesis. We show that retinoic acid expands the N-tubulin, X-ngnr-1, X-MyT1, X-&Dgr;-1 and Gli3 domains and inhibits the expression of Zic2 and sonic hedgehog in the neural ectoderm, whereas a retinoid antagonist produces opposite changes. In contrast, sonic and banded hedgehog overexpression reduced the N-tubulin stripes, enlarged the neural plate at the expense of the neural crest, downregulated Gli3 and upregulated Zic2. Thus, retinoic acid and hedgehog signaling have opposite effects on the prepattern genes Gli3 and Zic2 and on other genes acting downstream in the neurogenesis cascade. In addition, retinoic acid cannot rescue the inhibitory effect of Notch(ICD), Zic2 or sonic hedgehog on primary neurogenesis. Our results suggest that retinoic acid acts very early, upstream of sonic hedgehog, and we propose a model for regulation of differentiation and proliferation in the neural plate, showing that retinoic acid might be activating primary neurogenesis by repressing sonic hedgehog expression.
منابع مشابه
Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate.
In Xenopus neuroectoderm, posterior cells start differentiating at the end of gastrulation, while anterior cells display an extended proliferative period and undergo neurogenesis only at tailbud stage. Recent studies have identified several important components of the molecular pathways controlling posterior neurogenesis, but little is known about those controlling the timing and positioning of...
متن کاملThe control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm
In Xenopus, the primary neurons form in three domains either side of the midline in the posterior neurectoderm. At the late neurula stage there are approximately 120 primary sensory neurons on each side of the embryo. Co-injecting synthetic mRNA encoding retinoic acid receptor alpha (NR1B1) and retinoid X receptor beta (NR2B2) results in an increase in the number of primary neurons and this is ...
متن کاملRetinoid receptors promote primary neurogenesis in Xenopus.
Retinoid receptors, which are members of the nuclear hormone receptor superfamily, act as ligand-dependent transcription factors. They mediate the effects of retinoic acid primarily as heterodimers of retinoic acid receptors (RARs) and retinoid X receptors (RXRs). To analyse their function, xRXR beta synthetic mRNA was injected into Xenopus embryos in combination with normal and mutated xRAR al...
متن کاملThe germ cell nuclear factor is required for retinoic acid signaling during Xenopus development
The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor that functions as a transcriptional repressor and is transiently expressed in mammalian carcinoma cells during retinoic acid (RA) induced neuronal differentiation. During Xenopus laevis development, the spatiotemporal expression pattern of embryonic GCNF (xEmGCNF) suggests a role in anteroposterior specification of the neur...
متن کاملThe Alzheimer-related gene presenilin-1 facilitates sonic hedgehog expression in Xenopus primary neurogenesis
We analyzed the influence of presenilins on the genetic cascades that control neuronal differentiation in Xenopus embryos. Resembling sonic hedgehog (shh) overexpression, presenilin mRNA injection reduced the number of N-tubulin+ primary neurons and modulated Gli3 and Zic2 according to their roles in activating and repressing primary neurogenesis, respectively. Presenilin increased shh expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 126 19 شماره
صفحات -
تاریخ انتشار 1999