Copper(II) and the pathological H50Q α-synuclein mutant: Environment meets genetics
نویسندگان
چکیده
Copper is one of the metals described to bind the Parkinson disease-related protein α-synuclein (aSyn), and to promote its aggregation. Although histidine at position 50 in the aSyn sequence is one of the most studied copper-anchoring sites, its precise role in copper binding and aSyn aggregation is still unclear. Previous studies suggested that this residue does not significantly affect copper-mediated aSyn aggregation. However, our findings showed that the aggregation of the pathological H50Q aSyn mutant is enhanced by copper hints otherwise. Despite the inexistence of a model for aSyn H50Q-copper complexation, we discuss possible mechanisms by which this metal contributes to the misfolding and self-assembly of this particular aSyn mutant. Considering the genetic association of the H50Q mutation with familial forms of Parkinson disease, and the fact that copper homeostasis is deregulated in this disorder, understanding the interplay between both factors will shed light into the molecular and cellular mechanisms triggering the development and spreading of the aSyn pathology.
منابع مشابه
The H50Q Mutation Induces a 10-fold Decrease in the Solubility of α-Synuclein*
The conversion of α-synuclein from its intrinsically disordered monomeric state into the fibrillar cross-β aggregates characteristically present in Lewy bodies is largely unknown. The investigation of α-synuclein variants causative of familial forms of Parkinson disease can provide unique insights into the conditions that promote or inhibit aggregate formation. It has been shown recently that a...
متن کاملEnvironmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity.
Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to a...
متن کاملResidue histidine 50 plays a key role in protecting α-synuclein from aggregation at physiological pH.
α-Synuclein (αSyn) aggregation is involved in the pathogenesis of Parkinson disease (PD). Recently, substitution of histidine 50 in αSyn with a glutamine, H50Q, was identified as a new familial PD mutant. Here, nuclear magnetic resonance (NMR) studies revealed that the H50Q substitution causes an increase of the flexibility of the C-terminal region. This finding provides direct evidence that th...
متن کاملUnveiling a Selective Mechanism for the Inhibition of α-Synuclein Aggregation by β-Synuclein
α-Synuclein (αS) is an intrinsically disordered protein that is associated with Parkinson's disease (PD) through its ability to self-assemble into oligomers and fibrils. Inhibition of this oligomerization cascade is an interesting approach to developing therapeutical strategies and β-synuclein (βS) has been described as a natural negative regulator of this process. However, the biological backg...
متن کاملCopper(II) Binding to α-Synuclein, the Parkinson’s Protein
Variations in tryptophan fluorescence intensities confirm that copper(II) interacts with alpha-synuclein, a protein implicated in Parkinson's disease. Trp4 fluorescence decay kinetics measured for the F4W protein show that Cu(II) binds tightly (Kd 100 nM) near the N-terminus at pH 7. Work on a F4W/H50S mutant indicates that a histidine imidazole is not a ligand in this high-affinity site.
متن کامل