Link between fertilization-induced Ca2+ oscillations and relief from metaphase II arrest in mammalian eggs: a model based on calmodulin-dependent kinase II activation.

نویسنده

  • G Dupont
چکیده

Mammalian eggs are ovulated in metaphase II of meiosis, in a state characterized by high levels of cyclin B and of active maturation promoting factor (MPF). This arrest is mediated by an activity referred to as cytostatic factor (CSF) which prevents the degradation of cyclin. Fertilization triggers a train of Ca2+ spikes which is responsible for the decrease in activity of both MPF and CSF. The decline in MPF however much precedes that in CSF. Experimental observations on mammalian eggs indicate that the kinetics of cell cycle resumption much depends on the temporal pattern of the repetitive Ca2+ spikes. Here, we propose a theoretical model which accounts for Ca(2+)-induced relief from metaphase II arrest in mammalian eggs. The model is based on the fact that Ca2+/calmodulin kinase II (CaMKII) activation is the primary event leading to inactivation of both CSF and MPF. To account for experimental observations, it has to be assumed that CaMKII activation affects the level of the active form of the anaphase promoting complex (APC), which initiates the degradation of cyclin, through two pathways characterized by different time scales. Thus, we hypothesize that CaMKII activation by Ca2+ leads to the transformation of a mediator protein from a form which stimulates the inactivation of the APC into a form which gradually and indirectly induces the deactivation of CSF. In consequence, a sufficient number of Ca2+ spikes first triggers the decrease of MPF, thus allowing the egg to enter in interphase, and later that of CSF. Finally, when CSF is low and when Ca2+ oscillations have stopped, the level of MPF can increase again, a phenomenon that would correspond to the first mitosis. This model also accounts for the observed dependence of the time of entry in interphase (marked by the appearance of the pronuclei) on the frequency of Ca2+ spikes, as well as for the possible entry in metaphase III arrest, a pathological state of the egg which results from an insufficient activation by Ca2+. This study provides some theoretical prediction as to the time of the first mitosis as a function of the temporal pattern of Ca2+ oscillations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs.

Mouse eggs arrest at metaphase II following ovulation and are only triggered to complete meiosis when fertilized. Sperm break the cell-cycle arrest by a long-lasting series of Ca2+ spikes that lead to an activation of the anaphase-promoting complex/cyclosome. The signal transduction pathway is not fully resolved but both protein kinase C (PKC) and calmodulin-dependent protein kinase II (CamKII)...

متن کامل

Calmodulin-dependent protein kinase gamma 3 (CamKIIgamma3) mediates the cell cycle resumption of metaphase II eggs in mouse.

Mature mammalian eggs are ovulated arrested at meiotic metaphase II. Sperm break this arrest by an oscillatory Ca(2+) signal that is necessary and sufficient for the two immediate events of egg activation: cell cycle resumption and cortical granule release. Previous work has suggested that cell cycle resumption, but not cortical granule release, is mediated by calmodulin-dependent protein kinas...

متن کامل

A novel mechanism controls the Ca2+ oscillations triggered by activation of ascidian eggs and has an absolute requirement for Cdk1 activity.

Fertilisation in ascidians triggers a series of periodic rises in cytosolic Ca(2+) that are essential for release from metaphase I arrest and progression through meiosis II. These sperm-triggered Ca(2+) oscillations are switched off at exit from meiosis II. Ascidian zygotes provided the first demonstration of the positive feedback loop whereby elevated Cdk1 activity maintained these Ca(2+) osci...

متن کامل

Fertilization stimulates long-lasting oscillations of CaMKII activity in mouse eggs.

Elucidation of the biochemical mechanisms by which specific proteins transduce the all important intracellular calcium (Ca2+) signal at fertilization into events of egg activation will increase our understanding of the regulation of the onset of development and the extent to which these signals can be experimentally modified. Previously, we reported data supporting the hypothesis that mouse egg...

متن کامل

Calcium Elevation at Fertilization Coordinates Phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to Release Metaphase Arrest by Cytostatic Factor

BACKGROUND Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical chemistry

دوره 72 1-2  شماره 

صفحات  -

تاریخ انتشار 1998