Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish.

نویسندگان

  • Alexander Zimek
  • Klaus Weber
چکیده

Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

15-P046 Elucidating the genetic basis of scale loss in fish

Gene and whole genome duplications have profoundly shaped the structure and function of the vertebrate genome. Teleost fish, which comprise approximately 50% of all known vertebrate species, have undergone a third round of whole genome duplication (3R) above and beyond the two rounds of whole genome duplication shared by all vertebrates (2R). Most non-teleost vertebrates including tetrapods hav...

متن کامل

15-P045 The hox gene complement of a basal teleost, Pantodon bucholzi (Osteoglossomorpha)

Gene and whole genome duplications have profoundly shaped the structure and function of the vertebrate genome. Teleost fish, which comprise approximately 50% of all known vertebrate species, have undergone a third round of whole genome duplication (3R) above and beyond the two rounds of whole genome duplication shared by all vertebrates (2R). Most non-teleost vertebrates including tetrapods hav...

متن کامل

The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts.

The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most r...

متن کامل

Genome Duplications and Accelerated Evolution of Hox Genes and Cluster Architecture in Teleost Fishes1

SYNOPSIS. The early origin of four vertebrate Hox gene clusters during the evolution of gnathostomes was likely caused by two consecutive duplications of the entire genome and the subsequent loss of individual genes. The presumed conserved and important roles of these genes in tetrapods during development led to the general assumption that Hox cluster architecture had remained unchanged since t...

متن کامل

Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess vario...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of cell biology

دوره 84 6  شماره 

صفحات  -

تاریخ انتشار 2005