Next Generation Device Grade Silicon-Germanium on Insulator
نویسندگان
چکیده
High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment.
منابع مشابه
Germanium-on-Silicon for Integrated Silicon Photonics
To meet the unprecedented demands for data transmission speed and bandwidth silicon integrated photonics that can generate, modulate, process and detect light signals is being developed. Integrated silicon photonics that can be built using existing CMOS fabrication facilities offers the tantalizing prospect of a scalable and cost-efficient solution to replace electrical interconnects. Silicon, ...
متن کاملImprovement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering
In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...
متن کاملMaximizing uniaxial tensile strain in large-area silicon-on-insulator islands on compliant substrates
Recently we have demonstrated a process for generating uniaxial tensile strain in silicon. In this work, we generate uniaxially strained silicon and anisotropically strained silicon germanium on insulator with strain in both 100 and 110 in-plane directions. The strain is uniform over fairly large areas, and relaxed silicon-germanium alloy buffers are not used. The magnitude of uniaxial strain g...
متن کاملIntel ® Technology Journal Optical Technologies and Applications Silicon Photonics Silicon Photonics
We introduce our approach to opto-electronic integration, silicon photonics, and outline the key functions required for an opto-electronic integration platform: generation, control, and detection of light. Recent research results for silicon-based optical components are discussed including a tunable external cavity laser, a 2.5 GHz optical modulator and a silicon-germanium waveguide-based photo...
متن کاملElectrostatic Discharge (ESD) and Failure Analysis: Models, Methodologies and Mechanisms for CMOS, Silicon On Insulator and Silicon Germanium Technologies
−Failure analysis is fundamental to the design and development methodology of electrostatic discharge (ESD) devices and ESD robust circuits. The role of failure analysis (FA) in the models, methodology, band mechanisms evaluation for improving ESD robustness of semiconductor products in CMOS, silicon-on-insulator (SOI) and silicon germanium (SiGe) technologies will be reviewed. Index Terms−Reli...
متن کامل