Comparison of a quantum error-correction threshold for exact and approximate errors
نویسندگان
چکیده
Classical simulations of noisy stabilizer circuits are often used to estimate the threshold of a quantum errorcorrecting code. Physical noise sources are efficiently approximated by random insertions of Pauli operators. For a single qubit, more accurate approximations that still allow for efficient simulation can be obtained by including Clifford operators and Pauli operators conditional on measurement. We examine the feasibility of employing these expanded error approximations to obtain better threshold estimates. We calculate the level-1 pseudothreshold for the Steane [[7,1,3]] code for amplitude damping and dephasing along a non-Clifford axis. The expanded channels estimate the actual channel action more accurately than the Pauli channels before error correction. However, after error correction, the Pauli twirling approximation yields very accurate estimates of the performance of quantum error-correcting protocols in the presence of the actual noise channel.
منابع مشابه
Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes
It is a standard result in the theory of quantum error-correcting codes that no code of length n can fix more than n/4 arbitrary errors, regardless of the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this ...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملEntanglement and Approximate Quantum Error Correction
The possibility of performing quantum error correction obviously lies behind and justifies the vast efforts made up to now in order to develop quantum computation techniques, since it allows fault-tolerant computationeven when quantum systems—in fact extremely sensitive to noise—are considered as the basic carriers of information. Besides well-known algebraic conditions for exact quantum error ...
متن کاملThreshold Estimate for Fault Tolerant Quantum Computing
I make a rough estimate of the accuracy threshold for fault tolerant quantum computing with concatenated codes. First I consider only gate errors and use the depolarizing channel error model. I will follow P.Shor [1] for fault tolerant error correction (FTEC) and the fault tolerant implementation of elementary operations on states encoded by the 7-qubit code. A simple computer simulation sugges...
متن کاملGrammatical Error Correction of English as Foreign Language Learners
This study aimed to discover the insight of error correction by implementing two correction systems on three Iranian university students. The three students were invited to write four in-class essays throughout the semester, in which their verb errors and individual-selected errors were corrected using the Code Correction System and the Individual Correction System. At the end of the study, the...
متن کامل