Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations

نویسندگان

  • Federico Fogolari
  • Alessandra Corazza
  • Sara Fortuna
  • Miguel Angel Soler
  • Bryan VanSchouwen
  • Giorgia Brancolini
  • Stefano Corni
  • Giuseppe Melacini
  • Gennaro Esposito
  • Giorgio Colombo
چکیده

Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy calculations on the molten globule state of a protein: side-chain entropies of alpha-lactalbumin.

We present entropy estimates based on molecular dynamics simulations of models of the molten globule state of the protein alpha-lactalbumin at low pH. The entropy calculations use the covariance matrix of atom-positional fluctuations and yield the complete configurational entropy. The configurational entropy of the entire protein and of each of its side chains is calculated. Exposed side chains...

متن کامل

Theoretical and Computational Challenges in Entropy Evaluation of Macromolecules

Evaluation of entropy is important in biological processes in order to predict the stability of a molecular conformation. The entropy evaluation requires probabilistic modeling of conformations in the internal coordinates. Since fluctuations in the rotational (torsional) angle coordinates make a pivotal contribution to the overall configurational entropy of the molecule, we review circular prob...

متن کامل

Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems

For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the cont...

متن کامل

Estimation of absolute solvent and solvation shell entropies via permutation reduction.

Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015