Poisson intensity estimation with reproducing kernels
نویسندگان
چکیده
Despite the fundamental nature of the inhomogeneous Poisson process in the theory and application of stochastic processes, and its attractive generalizations (e.g. Cox process), few tractable nonparametric modeling approaches of intensity functions exist, especially in high dimensional settings. In this paper we develop a new, computationally tractable Reproducing Kernel Hilbert Space (RKHS) formulation for the inhomogeneous Poisson process. We model the square root of the intensity as an RKHS function. The modeling challenge is that the usual representer theorem arguments no longer apply due to the form of the inhomogeneous Poisson process likelihood. However, we prove that the representer theorem does hold in an appropriately transformed RKHS, guaranteeing that the optimization of the penalized likelihood can be cast as a tractable finite-dimensional problem. The resulting approach is simple to implement, and readily scales to high dimensions and largescale datasets.
منابع مشابه
An Effective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument
Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملA reproducing kernel-based spatial model in poisson regressions.
A semi-parametric spatial model for spatial dependence is proposed in Poisson regressions to study the effects of risk factors on incidence outcomes. The spatial model is constructed through an application of reproducing kernels. A Bayesian framework is proposed to infer the unknown parameters. Simulations are performed to compare the reproducing kernel-based method with several commonly used a...
متن کاملError estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space
In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.
متن کامل