Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications.

نویسندگان

  • Shihao Hu
  • Zhenhai Xia
  • Xiaosheng Gao
چکیده

The adhesion and friction coupling of hierarchical carbon nanotube arrays was investigated with a hierarchical multiscale modeling approach. At device level, vertically aligned carbon nanotube (VA-CNT) arrays with laterally distributed segments on top were analyzed via finite element methods to determine the macroscopic adhesion and friction force coupling. At the nanoscale, molecular dynamics simulation was performed to explore the origin of the adhesion enhancement due to the existence of the laterally distributed CNTs. The results show interfacial adhesion force is drastically promoted by interfacial friction force when a single lateral CNT is being peeled from an amorphous carbon substrate. By fitting with experiments, we find that under shearing loadings the maximum interfacial adhesion force is increased by a factor of ~5, compared to that under normal loadings. Pre-existing surface asperities of the substrate have proven to be the source of generating large interfacial friction, which in turn results in an enhanced adhesion. The critical peeling angles derived from the continuum and nano- levels are comparable to those of geckos and other synthetic adhesives. Our analysis indicates that the adhesion enhancement factor of the hierarchically structured VA-CNT arrays could be further increased by uniformly orienting the laterally distributed CNTs on top. Most importantly, a significant buckling of the lateral CNT at peeling front is captured on the molecular level, which provides a basis for the fundamental understanding of local deformation, and failure mechanisms of nanofibrillar structures. This work gives an insight into the durability issues that prevent the success of artificial dry adhesives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling.

With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling ap...

متن کامل

Carbon nanotube-based synthetic gecko tapes.

We have developed a synthetic gecko tape by transferring micropatterned carbon nanotube arrays onto flexible polymer tape based on the hierarchical structure found on the foot of a gecko lizard. The gecko tape can support a shear stress (36 N/cm(2)) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micrometer-size setae (replicated by n...

متن کامل

Multiscale Modeling of Carbon Nanotube Adhesion for Dry Adhesives

Geckos have extraordinary ability to move on vertical surfaces and ceilings. The secret of the climbing ability stems from their foot pads, a special hierarchical hairy structure. Mimicking such structure would lead to dry adhesives for many applications. Recent experiments showed that the adhesion of multiwalled carbon nanotubes is larger than that of a gecko foot-hair. To explore the adhesive...

متن کامل

Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays.

The nanotribological characterization of carbon nanotubes is fundamental for the exploration of new sliding applications. In this study, a comprehensive investigation of adhesion, friction and wear of a multiwalled nanotube (MWNT) tip, and SWNT (single-walled nanotube) and MWNT arrays has been carried out. A nonlinear response of the MWNT tip is observed when the tip is brought into and out of ...

متن کامل

Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off.

The ability of gecko lizards to adhere to a vertical solid surface comes from their remarkable feet with aligned microscopic elastic hairs. By using carbon nanotube arrays that are dominated by a straight body segment but with curly entangled top, we have created gecko-foot-mimetic dry adhesives that show macroscopic adhesive forces of approximately 100 newtons per square centimeter, almost 10 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2012