A Diesel Engine Model for Dynamic Drive Cycle Simulations
نویسندگان
چکیده
The development and implementation of a diesel engine combustion system simulation model is described. The model is a crank angle based combustion model, which uses the conditions in the intake and exhaust manifolds together with the fuel injection signal from the engine control unit to estimate the in-cylinder pressure throughout a complete combustion cycle. The model is implemented in Matlab. Furthermore, a Simulink coupling has been developed and implemented such that the combustion model can be connected directly to a Simulink mean value model of an engine air system. The coupling makes the combustion model act like a continuous source and a continuous sink in a mean value model. The coupling makes it possible to continuously simulate an engine in steady-state or transient operation, while the combustion model produces estimated cylinder pressure traces for each combustion cycle. This makes it possible to estimate fuel consumption and to couple the model with emission models which use the cylinder pressure or the rate of heat release as input. The model is developed, calibrated and verified using measured data from a 2.4 liter Volvo diesel engine, equipped with a turbocharger, an exhaust gas recirculation system, and a common rail injection system. The combustion model estimates IMEPnet with a correlation factor of 0.995 for the used data. The simulation time is in the range between 1 and 25 milliseconds for one combustion cycle on a standard computer, depending on the implementation.
منابع مشابه
A Full-Cycle 3 Dimensional Numerical Simulation of a Direct Injection Diesel Engine
In the present work, multidimensional modeling of open-cycle process of OM355 engine was developed. Calculations for computational mesh were carried out. The results of the model were validated by experimentally measured in-cylinder pressure and the good agreement between calculations and measurements approved the trustworthy of numerical code. Results included pressure, temperature, emissi...
متن کاملCombustion Improvement for Reducing Exhaust Emissions in DI Diesel Engine
Multidimensional modelling of open-cycle process of OM355 engine was developed. Calculations for computational mesh were carried out. The results of the model were validated by experimentally measured in-cylinder pressure and the good agreement between calculations and measurements approved the trustworthy of numerical code. Results included pressure, temperature, emission and Rate of heat rel...
متن کاملInvestigation of Dual Fuel Diesel Engine With Particular Reference to Engine Cycle Model
In order to use gaseous fuels in Diesel Engines, Dual-Fuel Diesel Engine (D. F. D. E) the pilot injection approach is chosen. To predict its performance, an engine cycle model, based on limited-pressure Diesel cycle, is constructed. The model predicts D. F. D. E performance with LPG, and CNG gases. Comparing with pure Diesel engine, by increasing gas proportion in dual-fuel, indicated power and...
متن کاملNumerical Investigation of Flow Field of D87 Dual Fuel Engine
A newly developed heavy duty diesel engine in dual fuel mode of operation has been studied in detail. The main fuel would be natural gas and diesel oil as pilot injection. The importance and effects of mixture preparation and formation through ports, valves and in cylinder flow field with different swirl ratio and tumble on diesel combustion phenomena is an accepted feature which has been studi...
متن کاملEfficient Simulation and Optimal Control for Vehicle Propulsion
Efficient drive cycle simulation of longitudinal vehicle propulsion models is an important aid for design and analysis of power trains. Tools on the market today mainly use two different methods for such simulations, forward dynamic or quasi-static inverse simulation. Here known theory for stable inversion of non linear systems is used in order to combine the fast simulation times of the quasi-...
متن کامل