Multi Snapshot Sparse Bayesian Learning for DOA Estimation

نویسندگان

  • Peter Gerstoft
  • Christoph F. Mecklenbräuker
  • Angeliki Xenaki
چکیده

March 1, 2016 The directions of arrival (DOA) of plane waves are estimated from multi-snapshot sensor array data using Sparse Bayesian Learning (SBL). The prior source amplitudes is assumed independent zero-mean complex Gaussian distributed with hyperparameters the unknown variances (i.e. the source powers). For a complex Gaussian likelihood with hyperparameter the unknown noise variance, the corresponding Gaussian posterior distribution is derived. For a given number of DOAs, the hyperparameters are automatically selected by maximizing the evidence and promote sparse DOA estimates. The SBL scheme for DOA estimation is discussed and evaluated competitively against LASSO (`1-regularization), conventional beamforming, and MUSIC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Underdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning

Sparse Bayesian learning (SBL) is applied to the coprime array for underdetermined wideband direction of arrival (DOA) estimation. Using the augmented covariance matrix, the coprime array can achieve a higher number of degrees of freedom (DOFs) to resolve more sources than the number of physical sensors. The sparse-based DOA estimation can deteriorate the detection and estimation performance be...

متن کامل

Bayesian compressive sensing based blind DOA estimation for multiple antennas∗

This paper discusses the direction of arrival (DOA) estimation problem for multiple antennas. A spatial domain compression scheme is proposed to compress the redundant signal of the received antennas array, where a Bernoulli distribution random weight matrix instead of a Gaussian matrix is acted as the measurement matrix. An angle sparse model is introduced to our scheme. The formulated recover...

متن کامل

An Efficient Sparse Representation Algorithm for Direction-of-Arrival Estimation

This paper presents an efficient sparse representation approach to direction-of-arrival (DOA) estimation using uniform linear arrays. The proposed approach constructs the jointly sparse model in real domain by exploiting the properties of centro-Hermitian matrices. Subsequently, DOA estimation is realized via the sparse Bayesian learning (SBL) algorithm. Further, the pruning threshold of SBL is...

متن کامل

Detection and Estimation of Multiple DoA Targets with Single Snapshot Measurements

In this work, we explore the problem of detecting multiple sources from single snapshot measurements in the context of the direction of arrival (DoA) estimation problem. We use the principles of sparse signal recovery for performing the detection. The problem reduces to estimating the optimal sparsity threshold parameter of the lasso estimator for achieving the required probability of correct d...

متن کامل

Sparse Bayesian Learning for DOA Estimation with Mutual Coupling

Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.09120  شماره 

صفحات  -

تاریخ انتشار 2016