Doping against the native propensity of MoS2: degenerate hole doping by cation substitution.

نویسندگان

  • Joonki Suh
  • Tae-Eon Park
  • Der-Yuh Lin
  • Deyi Fu
  • Joonsuk Park
  • Hee Joon Jung
  • Yabin Chen
  • Changhyun Ko
  • Chaun Jang
  • Yinghui Sun
  • Robert Sinclair
  • Joonyeon Chang
  • Sefaattin Tongay
  • Junqiao Wu
چکیده

Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS2) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS2 by substitutional niobium (Nb) doping, leading to a degenerate hole density of ∼ 3 × 10(19) cm(-3). Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS2 by replacing the Mo cations in the host lattice. van der Waals p-n homojunctions based on vertically stacked MoS2 layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS2. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerate n-doping of few-layer transition metal dichalcogenides by potassium.

We report here the first degenerate n-doping of few-layer MoS2 and WSe2 semiconductors by surface charge transfer using potassium. High-electron sheet densities of ~1.0 × 10(13) cm(-2) and 2.5 × 10(12) cm(-2) for MoS2 and WSe2 are obtained, respectively. In addition, top-gated WSe2 and MoS2 n-FETs with selective K doping at the metal source/drain contacts are fabricated and shown to exhibit low...

متن کامل

Corrigendum: Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions

Semiconducting molybdenum disulfphide has emerged as an attractive material for novel nanoscale optoelectronic devices due to its reduced dimensionality and large direct bandgap. Since optoelectronic devices require electron-hole generation/recombination, it is important to be able to fabricate ambipolar transistors to investigate charge transport both in the conduction band and in the valence ...

متن کامل

روتنوکوپراتها: میدان رقابت ابررسانایی و مغناطیس

 We have compared the structural, electrical, and magnetic properties of Ru(Gd1.5-xPrx)Ce0.5Sr2Cu2O10-δ (Pr/Gd samples) with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5-xPrx)Sr2Cu2O10-δ (Pr/Ce samples) with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique with RuGd1.5(GdxCe0.5-x) Sr2Cu2O10-δ (Gd/Ce samples) wi...

متن کامل

Air-stable surface charge transfer doping of MoS₂ by benzyl viologen.

Air-stable doping of transition metal dichalcogenides is of fundamental importance to enable a wide range of optoelectronic and electronic devices while exploring their basic material properties. Here we demonstrate the use of benzyl viologen (BV), which has one of the highest reduction potentials of all electron-donor organic compounds, as a surface charge transfer donor for MoS2 flakes. The n...

متن کامل

Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3

Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 2014