Functional differences between summer and winter season rain assessed with MODIS-derived phenology in a semi-arid region
نویسندگان
چکیده
Questions: We asked several linked questions about phenology and precipitation relationships at local, landscape, and regional spatial scales within individual seasons, between seasons, and between year temporal scales. (1) How do winter and summer phenological patterns vary in response to total seasonal rainfall? (2) How are phenological rates affected by the previous season rainfall? (3) How does phenological variability differ at landscape and regional spatial scales and at season and interannual temporal scales? Location: Southern Arizona, USA. Methods: We compared satellite-derived phenological variation between 38 distinct 625-km landscapes distributed in the northern Sonoran Desert region from 2000 to 2007. Regression analyses were used to identify relationships between landscape phenology dynamics in response to precipitation variability across multiple spatial and temporal scales. Results:While both summer and winter seasons show increases of peak greenness and peak growth with more precipitation, the timing of peak growth was advanced with more precipitation in winter, while the timing of peak greenness was advanced with more precipitation in summer. Surprisingly, summer maximum growth was negatively affected by winter precipitation. The spatial variations between summer and winter phenology were similar in magnitude and response. Larger-scale spatial and temporal variation showed strong differences in precipitation patterns; however the magnitudes of phenological spatial variability in these two seasons were similar. Conclusions: Vegetation patterns were clearly coupled to precipitation variability, with distinct responses at alternative spatial and temporal scales. Disaggregating vegetation into phenological variation, spanning value, timing, and integrated components revealed substantial complexity in precipitation-phenological relationships.
منابع مشابه
Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow
Semi-arid ecosystems with annual moisture inputs dominated by snowmelt cover much of the western United States, and a better understanding of their seasonal drivers of soil respiration is needed to predict consequences of climatic change on soil CO2 efflux. We assessed the relative importance of temperature, moisture, and plant phenology on soil respiration during seasonal shifts between cold, ...
متن کاملNitrous oxide fluxes from cropping soils in a semi-arid region in Australia: A 10 year perspective
Understanding nitrous oxide (N2O) fluxes from agricultural soils in semi-arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide fluxes were measured from three rain-fed, cropped soils in a semi-arid region of south-western Australia on a sub-daily basis from 1995 to 2014 using automated chambers. Western Australia’s grain-belt includes 7 million hectares of a...
متن کاملSpatial and Temporal Biogeography of Soil Microbial Communities in Arid and Semiarid Regions
Microbial communities in soils may change in accordance with distance, season, climate, soil texture and other environmental parameters. Microbial diversity patterns have been extensively surveyed in temperate regions, but few such studies attempted to address them with respect to spatial and temporal scales and their correlations to environmental factors, especially in arid ecosystems. In orde...
متن کاملEvaluation of rangeland gross primary productivity sensitivity potential to drought using ecosystem modelling
Gross primary productivity is one of the most important factors in the carbon cycle of terrestrial ecosystems. With global warming increase, the frequent drought events and the specific response of regional vegetation to these changes, it is essential to identify and quantify the relationships between climatic and GPP data in arid region. In this study, the responses of gross primary productivi...
متن کاملStudy of seasonal distribution of dust in the Middle East region using CALIOP and MODIS data
Aerosol optical depth in 550 nm and angstrom exponent measurements with MODIS have been studied with 1-degree resolution for the period 2006-2017 in the middle east. Moreover, tropospheric aerosol optical depth and depolarization ratios measured at 532 nm with CALIOP have been studied for same area and same period of time too. These parameters have been classified seasonally. Optical depth resu...
متن کامل