White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study
نویسندگان
چکیده
With the advent of diffusion tensor imaging (DTI), the study of plastic changes in white matter architecture due to long-term practice has attracted increasing interest. Professional musicians provide an ideal model for investigating white matter plasticity because of their early onset of extensive auditory and sensorimotor training. We performed fiber tractography and subsequent voxelwise analysis, region of interest (ROI) analysis, and detailed slicewise analysis of diffusion parameters in the corticospinal tract (CST) on 26 professional musicians and a control group of 13 participants. All analyses resulted in significantly lower fractional anisotropy (FA) values in both the left and the right CST in the musician group. Furthermore, a right-greater-than-left asymmetry of FA was observed regardless of group. In the musician group, diffusivity was negatively correlated with the onset of musical training in childhood. A subsequent median split into an early and a late onset musician group (median=7 years) revealed increased diffusivity in the CST of the early onset group as compared to both the late onset group and the controls. In conclusion, these DTI-based findings might indicate plastic changes in white matter architecture of the CST in professional musicians. Our results imply that training-induced changes in diffusion characteristics of the axonal membrane may lead to increased radial diffusivity as reflected in decreased FA values.
منابع مشابه
Can Musical Training Influence Brain Connectivity? Evidence from Diffusion Tensor MRI
In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain...
متن کاملDiffusion Tensor Imaging-Based Research on Human White Matter Anatomy
The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملThe Plasticity of the Superior Longitudinal Fasciculus as a Function of Musical Expertise: A Diffusion Tensor Imaging Study
Previous neuroimaging studies have demonstrated that musical expertise leads to functional alterations in language processing. We utilized diffusion tensor imaging (DTI) to investigate white matter plasticity in musicians with absolute pitch (AP), relative pitch and non-musicians. Using DTI, we analysed the fractional anisotropy (FA) of the superior longitudinal fasciculus (SLF), which is consi...
متن کاملPlasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography.
Early visual deprivation may induce plastic changes, not only in the visual system, but also in the remaining sensory systems, secondary to altered experience in these spared modalities. Most of previous studies were focused on the plasticity of cortical areas of sensory modalities, but little attention was paid to the plasticity of motor system and white matter fiber tracts. Our purpose is to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2009