Reducing dynamic power consumption in next generation DS-CDMA a mobile communication receivers - Application-Specific Systems, Architectures, and Processors, 2003. Proceedings. IEEE International
نویسندگان
چکیده
Reduction of the power consumption in portable wireless receivers is an important consideration for next-generation cellular systems specified by standards such as the UMTS, IMT2000. This paper explores the architectural design-space and methodologies for reducing the dynamic power dissipation in the Direct Sequence Code Division Multiple Access (DS-CDMA) downlink RAKE receiver. Starting with a reference implementation of the DS-CDMA RAKE receiver, we demonstrate design methodologies for achieving significant power reduction, while highlighting the corresponding performance trade-offs. At the algorithm level, we investigate the tradeoffs of reduced precision and arithmetic complexity on the receiver performance. We then present two architectures for implementing the reference and reduced complexity receivers, and analyze these architectures with respect to their dynamic power dissipation. Our findings report that reduction in precision from a 16 bit to a 10 bit data-path is found to yield significant power savings of 25.6% in the reference RAKE receiver architecture, with a performance loss of less than 1 dB. Further, a power reduction of upto 24.65% is achieved in a 16 bit data-path for the reduced complexity RAKE receiver compared to the reference architecture, with a performance loss of less than 2 dB. Although there is a tradeoff in performance, adaptive power saving is very important for mobile wireless terminals. The combined effect of reduced precision and complexity reduction leads to a 37.44% savings in baseband processing power.
منابع مشابه
Reducing dynamic power consumption in next generation DS-CDMA mobile communication receivers
Reducing dynamic power consumption in next generation DS-CDMA mobile communication receivers
متن کاملNonlinear Multiuser Receiver for Optimized Chaos-Based DS-CDMA Systems
Chaos based communications have drawn increasing attention over the past years. Chaotic signals are derived from non-linear dynamic systems. They are aperiodic, broadband and deterministic signals that appear random in the time domain. Because of these properties, chaotic signals have been proposed to generate spreading sequences for wide-band secure communication recently. Like conventional DS...
متن کاملBit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)
In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...
متن کاملApplication Specific Embedded Processors for Next Generation Communication Systems
Next generation communication systems, like 3G cell phones, car vision systems and network processors, will comprise a large variety of tasks to be executed concurrently. In order to meet the system requirements regarding computation performance, energy consumption, and chip area, the systems will be built upon multi-processor architectures including general-purpose as well as application-speci...
متن کاملMulticarrier DS/SFH-CDMA systems
In this paper, multicarrier direct-sequence/slow-frequency-hopping (MC DS/SFH) code-division multiple-access (CDMA) systems are proposed, in which multiple carriers are modulated by the same DS waveform and hopped in frequency according to a random hopping pattern. The receiver dehops the received signal with the same pattern, provides RAKE receivers for each carrier, and combines the outputs w...
متن کامل