Image Reconstruction by Multilabel Propagation

نویسندگان

  • Matthias Zisler
  • Freddie Åström
  • Stefania Petra
  • Christoph Schnörr
چکیده

This work presents a non-convex variational approach to joint image reconstruction and labeling. Our regularization strategy, based on the KL-divergence, takes into account the smooth geometry on the space of discrete probability distributions. The proposed objective function is efficiently minimized via DC programming which amounts to solving a sequence of convex programs, with guaranteed convergence to a critical point. Each convex program is solved by a generalized primal dual algorithm. This entails the evaluation of a proximal mapping, evaluated efficiently by a fixed point iteration. We illustrate our approach on few key scenarios in discrete tomography and image deblurring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Variation of Photon Intensity Inside Biological Phantom by Green Theorem

The Image reconstruction is an important problem in optical tomography. The process of the image processing requires the study of photon migration in biological tissue. There are several approaches to study and simulate propagation of photons in biological tissues. These approaches are categorized into stochastic and analytical groups. The Monte Carlo method as a stochastic method is widely use...

متن کامل

Deep Convolutional Ranking for Multilabel Image Annotation

Multilabel image annotation is one of the most important challenges in computer vision with many real-world applications. While existing work usually use conventional visual features for multilabel annotation, features based on Deep Neural Networks have shown potential to significantly boost performance. In this work, we propose to leverage the advantage of such features and analyze key compone...

متن کامل

Learning Image Conditioned Label Space for Multilabel Classification

This work addresses the task of multilabel image classification. Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visualsemantic embedding, we exploit extending these models for multilabel images. Specifically, we propose an imagedependent ranking model, which returns a ranked list of labels according to its relevance to the input image. In contrast ...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Reconstruction of Lambertian surfaces by discrete equal height contours and regions propagation

This paper describes two new methods for the reconstruction of discrete surfaces from shading images. Both approaches are based on the reconstruction of a discrete surface by mixing photometric and geometric techniques. The processing of photometric information is based on reflectance maps, which are classic tools of Shape from Shading. The geometric features are extracted from the discrete sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017