Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity
نویسندگان
چکیده
We provide genetic evidence defining a role for noncanonical Wnt function in vertebrate axis formation. In zebrafish, misexpression of Wnt-4, -5, and -11 stimulates calcium (Ca2+) release, defining the Wnt/Ca2+ class. We describe genetic interaction between two Wnt/Ca2+ members, Wnt-5 (pipetail) and Wnt-11 (silberblick), and a reduction of Ca2+ release in Wnt-5/pipetail. Embryos genetically depleted of both maternal and zygotic Wnt-5 product exhibit cell movement defects as well as hyperdorsalization and axis-duplication phenotypes. The dorsalized phenotypes result from increased beta-catenin accumulation and activation of downstream genes. The Wnt-5 loss-of-function defect is consistent with Ca2+ modulation having an antagonistic interaction with Wnt/beta-catenin signaling.
منابع مشابه
β-TrCP is a negative regulator of the Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos
The Wnt/b-catenin signaling pathway is responsible for the establishment of the dorsoventral axis of Xenopus embryos. The recent finding of the F-box/WD40-repeat protein slimb in Drosophila, whose loss-of-function mutation causes ectopic activation of wingless signaling (Jiang, J., Struhl, G., 1998. Nature 391, 493–496), led us to examine the role of its vertebrate homolog b-TrCP in Wnt/b-caten...
متن کاملBeta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells
Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملChemokine GPCR Signaling Inhibits β-Catenin during Zebrafish Axis Formation
Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein couple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 162 شماره
صفحات -
تاریخ انتشار 2003