Estradiol, acting through estrogen receptor alpha, restores dimethylarginine dimethylaminohydrolase activity and nitric oxide production in oxLDL-treated human arterial endothelial cells.
نویسندگان
چکیده
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthase. ADMA accumulation, mainly due to a decreased dimethylarginine dimethylaminohydrolase (DDAH) activity, has been related to the development of cardiovascular diseases. We investigate whether estradiol prevents the changes induced by oxidized low density lipoprotein (oxLDL) on the DDAH/ADMA/NO pathway in human umbilical artery endothelial cells (HUAEC). HUAEC were exposed to estradiol, native LDL (nLDL), oxLDL and their combinations for 24 h. In some experiments, cells were also exposed to the unspecific estrogen receptor (ER) antagonist ICI 182780, the specific ERα antagonist MPP or specific agonists for ERα, ERβ and GPER. ADMA concentration was measured by HPLC and concentration of NO by amperometry. Protein expression and DDAH activity were measured by immunoblotting and an enzymatic method, respectively. oxLDL, but not nLDL, increased ADMA concentration with a concomitant decrease on DDAH activity. oxLDL reduced eNOS protein and NO production. Estradiol alone had no effects on DDAH/ADMA/NO pathway, but increased the attenuated endothelial NO production induced by oxLDL by reduction in ADMA and preventing loss of eNOS protein levels. ICI 182780 and MPP completely abolished these effects of estradiol on oxLDL-exposed cells. ERα agonist, but not ERβ and GPER agonists, mirrored estradiol effects on NO production. In conclusion, estradiol restores (1) DDAH activity, and therefore ADMA levels, and (2) NO production impaired by oxLDL in HUAEC acting through ERα.
منابع مشابه
Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase.
BACKGROUND Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase (NOS). Plasma levels of ADMA are elevated in individuals with hypercholesterolemia or atherosclerosis. We postulated that reduced degradation of ADMA may play a role in the accumulation of ADMA in these individuals. Accordingly, we studied the effects of oxidized LDL (oxLDL) or tumor necrosis facto...
متن کاملEstrogen stimulates dimethylarginine dimethylaminohydrolase activity and the metabolism of asymmetric dimethylarginine.
BACKGROUND Experimental evidence suggests that estrogens stimulate the production of nitric oxide (NO) by vascular endothelial cells. This effect has been attributed to increased expression and enzymatic activity of both the constitutive and inducible isoforms of NO synthase. In this study, we have investigated whether estrogens regulate the metabolism or release of asymmetric dimethylarginine ...
متن کاملEstradiol Stimulates Vasodilatory and Metabolic Pathways in Cultured Human Endothelial Cells
Vascular effects of estradiol are being investigated because there are controversies among clinical and experimental studies. DNA microarrays were used to investigate global gene expression patterns in cultured human umbilical vein endothelial cells (HUVEC) exposed to 1 nmol/L estradiol for 24 hours. When compared to control, 187 genes were identified as differentially expressed with 1.9-fold c...
متن کاملCell-surface estrogen receptors mediate calcium-dependent nitric oxide release in human endothelia.
BACKGROUND Although estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, the mechanism for this benefit remains unclear. Because nitric oxide (NO) is considered an important endothelium-derived relaxing factor and may function to protect blood vessels against atherosclerotic development, we investigated the acute effects of physiologi...
متن کاملEstradiol counteracts oxidized LDL-induced asymmetric dimethylarginine production by cultured human endothelial cells.
OBJECTIVE Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthase, is a novel cardiovascular risk factor produced by endothelial cells. ADMA levels are mainly regulated by the activity of dimethylarginine dimethylaminohydrolases (DDAH). Endothelial release of ADMA is increased in the presence of oxidized LDL cholesterol (oxLDL), whereas estrogens stimulate NO p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular endocrinology
دوره 365 1 شماره
صفحات -
تاریخ انتشار 2013