Injury elicited increase in spinal cord neurosteroid content analyzed by gas chromatography mass spectrometry.
نویسندگان
چکیده
The effects of spinal cord injury (SCI), combined with castration and adrenalectomy, and of progesterone (PROG) treatment on neurosteroid levels and steroidogenic enzyme expression were investigated in the adult male rat spinal cord (SC). Steroid levels were quantified by gas chromatography/mass spectrometry in SC and plasma, and mRNAs of enzymes by quantitative real-time RT-PCR. The levels of pregnenolone (PREG), PROG, 5alpha-dihydroprogesterone, 3alpha,5alpha-tetrahydroprogesterone increased in SC 75 h after transection without significant increase in the plasma. After combined adrenalectomy and gonadectomy, significant levels of PREG and PROG remained in the SC, suggesting their local biosynthesis. In the SC of adrenalectomized and gonadectomized rats, there was an increase of PREG 24 h after SCI, followed at 75 h by a concomitant increase in its direct metabolite, PROG. These observations are consistent with a sequential increase of PREG biosynthesis and its conversion to PROG within the SC in response to injury. However, no significant change in P450-side chain cleavage and 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase mRNA levels was observed after SCI. Systemic PROG treatment after SCI, resulted in a very large increase in PROG, 5alpha-dihydroprogesterone, and 3alpha,5alpha-tetrahydroprogesterone in both plasma and SC. Furthermore, high levels of 3beta,5alpha-tetrahydroprogesterone were detected in SC, whereas their plasma levels remained barely detectable. Because the ratio of reduced metabolites to PROG was 65-times higher in SC than in the plasma, it appears likely that reduced metabolites mainly originated from local biosynthesis. Our results strongly suggest an important role for locally biosynthesized neurosteroids in the response of the SC to injury.
منابع مشابه
Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain.
Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of p...
متن کاملBiomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats
One of the major challenges in management of spinal cord injury (SCI) is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find su...
متن کاملComparison of Psychological Distress and Life Satisfaction in Clients of Spinal Cord Injury and Healthy Individuals
Introduction: Spinal cord injuries are one of the most serious injuries that cause many side effects. The aim of this study was to compare psychological distress and life satisfaction in spinal cord injury seekers and healthy individuals. Methods: The present study was a descriptive-comparative study. The statistical population of the present study included all spinal disabled and healthy peop...
متن کاملAn Optimal Protocol to Analyze the Rat Spinal Cord Proteome
Since the function of the spinal cord depends on the proteins found there, better defing the normal Spinal Cord Proteome is an important and challenging task. Although brain and cerebrospinal fluid samples from patients with different central nervous system (CNS) disorders have been studied, a thorough examination of specific spinal cord proteins and the changes induced by injury or associated ...
متن کاملDetermination of urine 3-HPMA, a stable acrolein metabolite in a rat model of spinal cord injury.
Acrolein has been suggested to be involved in a variety of pathological conditions. The monitoring of acrolein is of significant importance in delineating the pathogenesis of various diseases. Aimed at overcoming the reactivity and volatility of acrolein, we describe a specific and stable metabolite of acrolein in urine, N-acetyl-S-3-hydroxypropylcysteine (3-HPMA), as a potential surrogate mark...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 147 4 شماره
صفحات -
تاریخ انتشار 2006