The permutation-path coloring problem on trees

نویسندگان

  • Sylvie Corteel
  • Mario Valencia-Pabon
  • Danièle Gardy
  • Dominique Barth
  • Alain Denise
چکیده

In this paper we rst show that the permutation-path coloring problem is NP-hard even for very restrictive instances like involutions, which are permutations that contain only cycles of length at most two, on both binary trees and on trees having only two vertices with degree greater than two, and for circular permutations which are permutations that contain exactly one cycle on trees with maximum degree greater or equal to 4. We calculate a lower bound on the average complexity of the permutation-path coloring problem on arbitrary networks. Then we give combinatorial and asymptotic results for the permutation-path coloring problem on linear networks in order to show that the average number of colors needed to color any permutation on a linear network on n vertices is n=4 + o(n). We extend these results and obtain an upper bound on the average complexity of the permutation-path coloring problem on arbitrary trees, obtaining exact results in the case of generalized star trees. Finally we explain how to extend these results for the involutions-path coloring problem on arbitrary trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NP-completeness results for some problems on subclasses of bipartite and chordal graphs

Extending previous NP-completeness results for the harmonious coloring problem and the pair-complete coloring problem on trees, bipartite graphs and cographs, we prove that these problems are also NP-complete on connected bipartite permutation graphs. We also study the k-path partition problem and, motivated by a recent work of Steiner [G. Steiner, On the k-path partition of graphs, Theoret. Co...

متن کامل

Coloring permutation graphs in parallel

A coloring of a graph G is an assignment of colors to its vertices so that no two adjacent vertices have the same color. We study the problem of coloring permutation graphs using certain properties of the lattice representation of a permutation and relationships between permutations, directed acyclic graphs and rooted trees having speci/c key properties. We propose an e0cient parallel algorithm...

متن کامل

NC Coloring Algorithms for Permutation Graphs

We show that the problem of coloring a permutation graph of size n can be solved in O(logn logk) time using O(kn2 / logk log2n) processors on the CREW PRAM model of computation, where 1 < k < n. We estimate the parameter k on random permutation graphs and show that the coloring problem can be solved in O(logn loglogn) time in the average-case on the CREW PRAM model of computation with O(n2) pro...

متن کامل

Fractional and Integral Coloring of Locally-Symmetric Sets of Paths on Binary Trees

Motivated by the problem of allocating optical bandwidth in tree–shaped WDM networks, we study the fractional path coloring problem in trees. We consider the class of locally-symmetric sets of paths on binary trees and prove that any such set of paths has a fractional coloring of cost at most 1.367L, where L denotes the load of the set of paths. Using this result, we obtain a randomized algorit...

متن کامل

Just chromatic exellence in fuzzy graphs

A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 297  شماره 

صفحات  -

تاریخ انتشار 2003