Partially Adaptive Estimation of a Dichotomous Choice Model Using a Mixture of Normals
نویسنده
چکیده
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملAdaptive Convergence Rates of a Dirichlet Process Mixture of Multivariate Normals
It is shown that a simple Dirichlet process mixture of multivariate normals offers Bayesian density estimation with adaptive posterior convergence rates. Toward this, a novel sieve for non-parametric mixture densities is explored, and its rate adaptability to various smoothness classes of densities in arbitrary dimension is demonstrated. This sieve construction is expected to offer a substantia...
متن کاملMixture of Normals Probit Models
This paper generalizes the normal probit model of dichotomous choice by introducing mixtures of normals distributions for the disturbance term. By mixing on both the mean and variance parameters and by increasing the number of distributions in the mixture these models effectively remove the normality assumption and are much closer to semiparametric models. When a Bayesian approach is taken, the...
متن کاملA Mixture Model of Willingness to Pay Distributions
In this paper we propose a mixture model of willingness to pay distributions for contingent valuation studies. By allowing a point mass at zero, this model nests the conventional model as a special case. We discuss both parametric and nonparametric estimations of the mixture model. We consider estimation under two different data information settings for a double bounded dichotomous choice forma...
متن کاملDefault priors for density estimation with mixture models
The infinite mixture of normals model has become a popular method for density estimation problems. This paper proposes an alternative hierarchical model that leads to hyperparameters that can be interpreted as the location, scale and smoothness of the density. The priors on other parts of the model have little effect on the density estimates and can be given default choices. Automatic Bayesian ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012