Competing Indentation Deformation Mechanisms in Glass Using Different Strengthening Methods
نویسندگان
چکیده
Chemical strengthening via ion exchange, thermal tempering, and lamination are proven techniques for the strengthening of oxide glasses. For each of these techniques, the strengthening mechanism is conventionally ascribed to the linear superposition of the compressive stress (CS) profile on the glass surface. However, in this work, we use molecular dynamics simulations to reveal the underlying indentation deformation mechanism beyond the simple linear superposition of compressive and indentation stresses. In particular, the plastic zone can be dramatically different from the commonly assumed hemispherical shape, which leads to a completely different stress field and resulting crack system. We show that the indentation-induced fracture is controlled by two competing mechanisms: the CS itself and a potential reduction in free volume that can increase the driving force for crack formation. Chemical strengthening via ion exchange tends to escalate the competition between these two effects, while thermal tempering tends to reduce it. Lamination of glasses with differential thermal expansion falls in between. The crack system also depends on the indenter geometry and the loading stage, i.e., loading versus after unloading. It is observed that combining thermal tempering or high free volume content with ion exchange or lamination can impart a relatively high CS and reduce the driving force for crack formation. Therefore, such a combined approach might offer the best overall crack resistance for oxide glasses.
منابع مشابه
Evaluation of Sinking-In and Cracking Behavior of Soda-Lime Glass under Varying Angle of Trigonal Pyramid Indenter
It is well known that glass undergoes elastic and inelastic deformation under a sharp diamond indenter. Although brittle or less brittle behavior of glass must be connected with such mechanical responses of glass under the indenter, there has been limited research on in situ deformation behavior of glass during the loading and unloading indentation cycle. This is because most indentation tests ...
متن کاملLower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation
We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms est...
متن کاملStudy of Mechanical Deformation in Bulk Metallic Glass through Instrumented Indentation
Instrumented sharp indentation experiments at the nanoand micro-length scales were carried out in an attempt to quantify the deformation characteristics of Vitreloy 1 bulk metallic glass. The experiments were accompanied by detailed three-dimensional finite element simulations of instrumented indentation to formulate an overall constitutive response. By matching the experimentally observed con...
متن کاملRate dependence of serrated flow during nanoindentation of a bulk metallic glass
Plastic deformation of Pd–40Ni–20P bulk metallic glass (BMG) was investigated by instrumented nanoindentation experiments over a broad range of indentation strain rates. At low rates, the load–displacement curves during indentation exhibited numerous serrations or pop-ins, but these serrations became less prominent as the indentation rate was increased. Using the tip velocity during pop-in as a...
متن کاملVickers Indentation Cracking of Ion-Exchanged Glasses: Quasi-Static vs. Dynamic Contact
The indentation deformation and cracking responses of ion-exchanged glasses were measured using quasi-static and dynamic loading cycles. Two glass types were compared, a normal glass that deforms to a large extent by a shearing mechanism and a damage-resistant glass that comparatively deforms with less shear and more densification. The quasi-static indentation cracking threshold for median/radi...
متن کامل