Stationarity tests for spatial point processes using discrepancies.

نویسندگان

  • Sung Nok Chiu
  • Kwong Ip Liu
چکیده

For testing stationarity of a given spatial point pattern, Guan (2008) proposed a model-free statistic, based on the deviations between observed and expected counts of points in expanding regions within the sampling window. This article extends his method to a general class of statistics by incorporating also such information when points are projected to the axes and by allowing different ways to construct regions in which the deviations are considered. The limiting distributions of the new statistics can be expressed in terms of integrals of a Brownian sheet and hence asymptotic critical values can be approximated. A simulation study shows that the new tests are always more powerful than that of Guan. When applied to the longleaf pine data where Guan's test gave an inconclusive answer, the new tests indicate a clear rejection of the stationarity hypothesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A formal test for nonstationarity of spatial stochastic processes

Spatial statistics is one of the major methodologies of image analysis, field trials, remote sensing, and environmental statistics. The standard methodology in spatial statistics is essentially based on the assumption of stationary and isotropic random fields. Such assumptions might not hold in large heterogeneous fields. Thus, it is important to understand when stationarity and isotropy are re...

متن کامل

An autoregressive point source model for spatial processes.

We suggest a parametric modeling approach for nonstationary spatial processes driven by point sources. Baseline near-stationarity, which may be reasonable in the absence of a point source, is modeled using a conditional autoregressive (CAR) Markov random field. Variability due to the point source is captured by our proposed autoregressive point source (ARPS) model. Inference proceeds according ...

متن کامل

A KPSS test for stationarity for spatial point processes.

We propose a formal method to test stationarity for spatial point processes. The proposed test statistic is based on the integrated squared deviations of observed counts of events from their means estimated under stationarity. We show that the resulting test statistic converges in distribution to a functional of a two-dimensional Brownian motion. To conduct the test, we compare the calculated s...

متن کامل

Testing for separability of spatial–temporal covariance functions

Most applications in spatial statistics involve modeling of complex spatial–temporal dependency structures, and many of the problems of space and time modeling can be overcome by using separable processes. This subclass of spatial–temporal processes has several advantages, including rapid fitting and simple extensions ofmany techniques developed and successfully used in time series and classica...

متن کامل

A test for stationarity for spatio-temporal data

Many random phenomena in the environmental and geophysical sciences are functions of both space and time; these are usually called spatio-temporal processes. Typically, the spatio-temporal process is observed over discrete equidistant time and at irregularly spaced locations in space. One important aim is to develop statistical models based on what is observed. While doing so a commonly used as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 69 2  شماره 

صفحات  -

تاریخ انتشار 2013