Invariant Subspaces and Hyper-reflexivity for Free Semigroup Algebras

نویسندگان

  • KENNETH R. DAVIDSON
  • DAVID R. PITTS
چکیده

In this paper, we obtain a complete description of the invariant subspace structure of an interesting new class of algebras which we call free semigroup algebras. This enables us to prove that they are reflexive, and moreover to obtain a quantitative measure of the distance to these algebras in terms of the invariant subspaces. Such algebras are called hyper-reflexive. This property is very strong, but it has been established in only a very few cases. Moreover the prototypes of this class of algebras are the natural candidate for a non-commutative analytic Toeplitz algebra on n variables. The case we make for this analogy is very compelling. In particular, in this paper, the key to the invariant subspace analysis is a good analogue of the Beurling theorem for invariant subspaces of the unilateral shift. This leads to a notion of inner–outer factorization in these algebras. In a sequel to this paper [13], we add to this evidence by showing that there is a natural homomorphism of the automorphism group onto the group of conformal automorphisms of the ball in Cn. A free semigroup algebra is the weak operator topology closed algebra generated by a set S1, . . . , Sn of isometries with pairwise orthogonal ranges. These conditions are described algebraically by S∗ i Sj = δijI for 1 ≤ i, j ≤ n; (F)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups

Let S be a locally compact foundation semigroup with identity and                          be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of    In this paper, we prove that  X  is invariantly  complemented in   if and  only if  the left ideal  of    has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...

متن کامل

Free Semigroupoid Algebras

Every countable directed graph generates a Fock space Hilbert space and a family of partial isometries. These operators also arise from the left regular representations of free semigroupoids derived from directed graphs. We develop a structure theory for the weak operator topology closed algebras generated by these representations, which we call free semigroupoid algebras. We characterize semis...

متن کامل

The Structure of Free Semigroup Algebras

A free semigroup algebra is the wot-closed algebra generated by an n-tuple of isometries with pairwise orthogonal ranges. The interest in these algebras arises primarily from two of their interesting features. The first is that they provide useful information about unitary invariants of representations of the Cuntz–Toeplitz algebras. The second is that they form a class of nonself-adjoint opera...

متن کامل

Absolutely Continuous Representations and a Kaplansky Density Theorem for Free Semigroup Algebras

We introduce notions of absolutely continuous functionals and representations on the non-commutative disk algebra An. Absolutely continuous functionals are used to help identify the type L part of the free semigroup algebra associated to a ∗-extendible representation σ. A ∗-extendible representation of An is regular if the absolutely continuous part coincides with the type L part. All known exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999