A three-hybrid system to detect RNA-protein interactions in vivo.

نویسندگان

  • D J SenGupta
  • B Zhang
  • B Kraemer
  • P Pochart
  • S Fields
  • M Wickens
چکیده

RNA-protein interactions are pivotal in fundamental cellular processes such as translation, mRNA processing, early development, and infection by RNA viruses. However, in spite of the central importance of these interactions, few approaches are available to analyze them rapidly in vivo. We describe a yeast genetic method to detect and analyze RNA-protein interactions in which the binding of a bifunctional RNA to each of two hybrid proteins activates transcription of a reporter gene in vivo. We demonstrate that this three-hybrid system enables the rapid, phenotypic detection of specific RNA-protein interactions. As examples, we use the binding of the iron regulatory protein 1 (IRP1) to the iron response element (IRE), and of HIV trans-activator protein (Tat) to the HIV trans-activation response element (TAR) RNA sequence. The three-hybrid assay we describe relies only on the physical properties of the RNA and protein, and not on their natural biological activities; as a result, it may have broad application in the identification of RNA-binding proteins and RNAs, as well as in the detailed analysis of their interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bacterial three-hybrid assay detects Escherichia coli Hfq–sRNA interactions in vivo

The interaction of RNA molecules with proteins is a critical aspect of gene regulation across all domains of life. Here, we report the development of a bacterial three-hybrid (B3H) assay to genetically detect RNA-protein interactions. The basis for this three-hybrid assay is a transcription-based bacterial two-hybrid assay that has been used widely to detect and dissect protein-protein interact...

متن کامل

Identification of ribonucleoprotein (RNP)-specific protein interactions using a yeast RNP interaction trap assay (RITA).

We describe an adaptation of the yeast three-hybrid system that allows the reconstitution in vivo of tripartite (protein-RNA-protein) ribonucleoproteins (RNPs). To build and try this system that we called RNP interaction trap assay (RITA), we used as a model the autoantigenic Ro RNPs. hY RNAs bear distinct binding sites for Ro60 and La proteins, and Ro RNPs are thus physiologically tripartite (...

متن کامل

Analyzing mRNA-protein complexes using a yeast three-hybrid system.

RNA-protein interactions are essential for the proper execution and regulation of every step in the life of a eukaryotic mRNA. Here we describe a three-hybrid system in which RNA-protein interactions can be analyzed using simple phenotypic or enzymatic assays in Saccharomyces cerevisiae. The system can be used to detect or confirm an RNA-protein interaction, to analyze RNA-protein interactions ...

متن کامل

Progress and variations in two-hybrid and three-hybrid technologies.

The original yeast two-hybrid system and its variants have proven to be effective tools for identification and analysis of protein-protein, protein-DNA and protein-RNA interactions. The two-hybrid assay is being applied to the entire complement of proteins of the yeast Saccharomyces cerevisiae to characterize the network of protein-protein interactions in the eukaryotic cell. The development of...

متن کامل

Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system.

The p53 tumor suppressor protein is a homotetrameric transcription factor whose gene is mutated in nearly half of all human cancers. In an unrelated screen of RNA/protein interactions using the yeast three-hybrid system, we inadvertently detected p53 interactions with several different RNAs. A literature review revealed previous reports of both sequence-specific and -non-specific interactions b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 16  شماره 

صفحات  -

تاریخ انتشار 1996