A model for the strength of yarn-like carbon nanotube fibers.
نویسندگان
چکیده
A model for the strength of pure carbon nanotube (CNT) fibers is derived and parametrized using experimental data and computational simulations. The model points to the parameters of the subunits that must be optimized in order to produce improvements in the strength of the macroscopic CNT fiber, primarily nanotube length and shear strength between CNTs. Fractography analysis of the CNT fibers reveals a fibrous fracture surface and indicates that fiber strength originates from resistance to nanotube pull-out and is thus proportional to the nanotube-nanotube interface contact area and shear strength. The contact area between adjacent nanotubes is determined by their degree of polygonization or collapse, which in turn depends on their diameter and number of layers. We show that larger diameter tubes with fewer walls have a greater degree of contact, as determined by continuum elasticity theory, molecular mechanics, and image analysis of transmission electron micrographs. According to our model, the axial stress in the CNTs is built up by stress transfer between adjacent CNTs through shear and is thus proportional to CNT length, as supported by data in the literature for CNT fibers produced by different methods and research groups. Our CNT fibers have a yarn-like structure in that rather than being solid, they are made of a network of filament subunits. Indeed, the model is consistent with those developed for conventional yarn-like fibers.
منابع مشابه
Thermal conductivity of high performance carbon nanotube yarn-like fibers
Articles you may be interested in Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite Appl. Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites Appl. Effective multifunctionality of poly(p-phenylene sulfide) na...
متن کاملThe Molecular Mechanics Model of Carbon Allotropes
Carbon can form numerous allotropes because of its valency. Graphene, carbon nanotubes,capped carbon nanotubes, buckyballs, and nanocones are well-known polymorphs of carbon.Remarkable mechanical properties of these carbon atoms have made them the subject of intenseresearch. Several studies have been conducted on carbon nanotubes or graphene. In the presentstudy, the molecular mechanics method ...
متن کاملIon Beam Modification of Carbon Nanotube Yarn in Air and Vacuum
We studied the effects ion beam irradiation on carbon nanotube (CNT) yarns. CNT yarn was fabricated by drawing and spinning CNT sheets from a vertically aligned CNT forest. The yarn was irradiated by 2.5 MeV protons in either vacuum or air. Irradiation in air was achieved by directing the proton beam through a 0.025 mm thick Ti window. Irradiation in vacuum occurred at a pressure of <10-6 torr ...
متن کاملEffects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملFrom Carbon Nanotube Yarns to Sensors: Recent Findings and Challenges
Carbon nanotube (CNT) arrays can be drawn into a web and then twisted into threads. These CNT threads contain thousands of carbon nanotubes in their cross-section and can be further composed into yarns consisting of one or more threads. CNT yarns exhibit significant mechanical stiffness and strength and low electrical resistivity. More importantly, CNT yarns exhibit piezoresistance that could b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2011