Trust-region methods for rectangular systems of nonlinear equations

نویسندگان

  • Margherita Porcelli
  • Maria Macconi
  • Benedetta Morini
چکیده

Here Θ : X → IR is a continuously differentiable mapping, X ⊆ IR is an open set containing the feasible region Ω and Ω is an n-dimensional box, Ω = {x ∈ IR : l ≤ x ≤ u}. These inequalities are meant component-wise and l ∈ (IR ∪−∞), u ∈ (IR ∪∞). Taking into account the variety of applications yielding the problem (1), we allow any relationship between m and n. The relevance of this problem is well known. It arises in equality-constrained optimization, restoration feasibility for nonlinear programming, parameter identification problems, see [1, 2, 3]. Moreover, the general class of problems given by nonlinear system of equalities and inequalities can be cast as in (1). We propose two trust-region methods for bound-constrained nonlinear systems. The first method is based on a Gauss-Newton model, the second one is based on a regularized Gauss-Newton model and results to be a LevenbergMarquardt method. The globalization strategy uses affine scaling matrices arising in bound-constrained optimization. Under reasonable assumptions, these methods globally converge to a solution of (1) or to a first-order stationary point for the bound-constrained least-squares problem

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations

In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations‎. ‎One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach‎. ‎Each of methods showed fast convergence in special problems and slow convergence in other o...

متن کامل

A Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)

This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...

متن کامل

A new approach for nonlinear vibration analysis of thin and moderately thick rectangular plates under inplane compressive load

In this study, a hybrid method is proposed to investigate the nonlinear vibrations of pre- and post-buckled rectangular plates for the first time. This is an answer to an existing need to develope a fast and precise numerical model which can handle the nonlinear vibrations of buckled plates under different boundary conditions and plate shapes. The method uses the differential quadrature element...

متن کامل

A New Class of Nonmonotone Adaptive Trust-region Methods for Nonlinear Equations with Box Constraints

A nonmonotone trust-region method for the solution of nonlinear systems of equations with box constraints is considered. The method differs from existing trust-region methods both in using a new nonmonotonicity strategy in order to accept the current step and by using a new updating technique for the trust-region-radius. The overall method is shown to be globally convergent. Moreover, when comb...

متن کامل

Combining Trust Region Techniques and Rosenbrock Methods for Gradient Systems

Rosenbrock methods are popular for solving stiff initial value problems for ordinary differential equations. One advantage is that there is no need to solve a nonlinear equation at every iteration, as compared with other implicit methods such as backward difference formulas and implicit Runge-Kutta methods. In this paper, we introduce some trust region techniques to control the time step in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007