Averting the magnetic braking catastrophe on small scales: disk formation due to Ohmic dissipation

نویسندگان

  • W. B. Dapp
  • S. Basu
چکیده

We perform axisymmetric resistive MHD calculations that demonstrate that centrifugal disks can indeed form around Class 0 objects despite magnetic braking. We follow the evolution of a prestellar core all the way to near-stellar densities and stellar radii. Under fluxfreezing, the core is braked and disk formation is inhibited, while Ohmic dissipation renders magnetic braking ineffective within the first core. In agreement with observations that do not show evidence for large disks around Class 0 objects, the resultant disk forms in close proximity to the second core and has a radius of only ≈10 R early on. Disk formation does not require enhanced resistivity. We speculate that the disks can grow to the sizes observed around Class II stars over time under the influence of both Ohmic dissipation and ambipolar diffusion, as well as internal angular momentum redistribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Braking and Protostellar Disk Formation: Ambipolar Diffusion

It is established that the formation of rotationally supported disks during the main accretion phase of star formation is suppressed by a moderately strong magnetic field in the ideal MHD limit. Non-ideal MHD effects are expected to weaken the magnetic braking, perhaps allowing the disk to reappear. We concentrate on one such effect, ambipolar diffusion, which enables the field lines to slip re...

متن کامل

Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?

We investigate whether or not the low ionisation fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating...

متن کامل

Magnetohydrodynamics of Protostellar Disks

The magnetohydrodynamical behavior (MHD) of accretion disks is reviewed. A detailed presentation of the fundamental MHD equations appropriate for protostellar disks is given. The combination of a weak (subthermal) magnetic field and Keplerian rotation is unstable to the magnetorotational instability (MRI), if the degree of ionization in the disk is sufficiently high. The MRI produces enhanced a...

متن کامل

Magnetically-controled Spasmodic Accretion during Star Formation: Ii. Results

The problem of the late accretion phase of the evolution of an axisymmetric, isothermal magnetic disk surrounding a forming star has been formulated in a companion paper. The “central sink approximation” is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 10 cm and radii smaller than a few AUs. Only the electrons are assumed ...

متن کامل

Slip Effects on Ohmic Dissipative Non-Newtonian Fluid Flow in the Presence of Aligned Magnetic Field

The present paper deals with the effects of Ohmic dissipative Casson fluid flow over a stretching sheet in the presence of aligned magnetic field. The present phenomenon also includes the interaction of thermal radiation and velocity slip. The governing boundary layer equations are transformed into a set of ordinary differential equations using the similarity transformations. The dimensionless ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010