Speeded Up Image Matching using Split and Extended Sift Features
نویسندگان
چکیده
Matching feature points between images is one of the most fundamental issues in computer vision tasks. As the number of feature points increases, the feature matching rapidly becomes a bottleneck. In this paper, a novel method is presented to accelerate features matching by two modifications of the popular SIFT algorithm. The first modification is based on splitting the SIFT features into two types, Maximaand Minima-SIFT features, and making comparisons only between the features of the same type, which reduces the matching time to 50% with respect to the original SIFT. In the second modification, the SIFT feature is extended by a new attribute which is an angle between two independent orientations. Based on this angle, SIFT features are divided into subsets and only the features with the difference of their angles less than a pre-set threshold value are compared. The performance of the proposed methods was tested on two groups of images, real-world stereo images and standard dataset images. The presented experimental results show that the feature matching step can be accelerated 18 times with respect to exhaustive search without losing a noticeable portion of correct matches.
منابع مشابه
Estimation and Image Segmentation of a Sparse Disparity Map for 3D Reconstruction
In this paper, a stereo matching algorithm based on image segments is presented. We propose the hybrid segmentation algorithm that is based on a combination of the Belief Propagation and K-Means algorithms with aim to refine the final sparse disparity map by using a stereo pair of images. Firstly, a color based segmentation method is applied for segmenting the left image of the input stereo pai...
متن کاملTransform Coding of Image Feature Descriptors
We investigate transform coding to efficiently store and transmit SIFT and SURF image descriptors. We show that image and feature matching algorithms are robust to significantly compressed features. We achieve nearperfect image matching and retrieval for both SIFT and SURF using ∼2 bits/dimension. When applied to SIFT and SURF, this provides a 16× compression relative to conventional floating p...
متن کاملFeature Based Image Matching for Airborne Platform
In computer vision, detection and tracking of targets is very complex problem and demands sophisticated solutions. Unmanned Aerial Vehicles (UAVs) are increasingly being used for reconnaissance and Surveillance. This framework mainly consists of image matching for reconnaissance and Surveillance. This framework mainly consists of image matching for Digital Scene Matching Area Correlation (DSMAC...
متن کاملAn Efficient Finger-Knuckle-Print Based Recognition System Fusing SIFT and SURF Matching Scores
This paper presents a novel combination of local-local information for an efficient finger-knuckle-print (FKP) based recognition system which is robust to scale and rotation. The non-uniform brightness of the FKP due to relatively curvature surface is corrected and texture is enhanced. The local features of the enhanced FKP are extracted using the scale invariant feature transform (SIFT) and th...
متن کاملImage Background Matching for Identifying Suspects
Thousands of digital images may exist of a given location, some of which may show a crime in progress. One technique for identifying suspects and witnesses is to collect images of specific crime scenes from computers, cell phones, cameras and other electronic devices, and perform image matching based on image backgrounds. This paper describes an image matching technique that is used in conjunct...
متن کامل