Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures

نویسنده

  • A. C. Sarmah
چکیده

The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses. Keywords—Debye length, Depletion width, flat band capacitance, impurity concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanowire CdS-CdTe Solar Cells with Molybdenum Oxide as Contact

Using a 10 nm thick molybdenum oxide (MoO3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO3 film in N2 resulted in a reduction of the cell's series resistance, from 9.97 Ω/cm(2) to 7.69 Ω/cm(2), and increase in efficiency from 9.9% to ...

متن کامل

Electrical characteristics of an organic bistable device using an Al/Alq3/nanostructured MoO3/Alq3/p-Si structure

The electrical properties of a device with an Al /Alq3/nanostructured MoO3 /Alq3 /p+-Si structure were investigated for organic resistance switching memories. The conductance of the device can be electrically switched to either high conductance or low conductance. The bistable switching of the device is attributed to the MoO3 nanoclusterlike layer interposed between the Alq3 thin films. When th...

متن کامل

The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency

 Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...

متن کامل

Irradiation effects of 6 MeV electron on electrical properties of Al/Al2O3/n-Si MOS capacitors

The influence of 6 MeV electron irradiation on the electrical properties of Al/Al2O3/n-Si metal–oxide– semiconductor (MOS) capacitors has been investigated. Using rf magnetron sputtering deposition technique, Al/Al2O3/n-Si MOS capacitors were fabricated and such twelve capacitors were divided into four groups. The first group of MOS capacitors was not irradiated with 6 MeV electrons and treated...

متن کامل

Controlling Charge Injection Properties in Polymer Field-Effect Transistor by Incorporation of Solution Processed Molybdenum Trioxide

A simply and facilely synthesized MoO3 solution was developed to fabricate charge injection layers for improving the charge-injection properties in p-type organic field-effect transistors (OFETs). By dissolving MoO3 powder in ammonium (NH3) solvent under air atmosphere, an intermediate ammonium molybdate ((NH4)2MoO4) precursor is made stable, transparent and to be spin-coated to form the MoO3 i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015