Using a State-Space Model and Location Analysis to Infer Time-Delayed Regulatory Networks

نویسندگان

  • Chushin Koh
  • Fang-Xiang Wu
  • Gopalan Selvaraj
  • Anthony J. Kusalik
چکیده

Computational gene regulation models provide a means for scientists to draw biological inferences from time-course gene expression data. Based on the state-space approach, we developed a new modeling tool for inferring gene regulatory networks, called time-delayed Gene Regulatory Networks (tdGRNs). tdGRN takes time-delayed regulatory relationships into consideration when developing the model. In addition, a priori biological knowledge from genome-wide location analysis is incorporated into the structure of the gene regulatory network. tdGRN is evaluated on both an artificial dataset and a published gene expression data set. It not only determines regulatory relationships that are known to exist but also uncovers potential new ones. The results indicate that the proposed tool is effective in inferring gene regulatory relationships with time delay. tdGRN is complementary to existing methods for inferring gene regulatory networks. The novel part of the proposed tool is that it is able to infer time-delayed regulatory relationships.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization for Complex Dynamic Networks with State and Coupling Time-Delays

This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...

متن کامل

Inferring Time-Varying Network Topologies from Gene Expression Data

Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this wo...

متن کامل

Analysis of Power Electronic Converters Using the Developed State Space Averaging Method

Power electronic converters are non-linear time-dependent systems whose exact analysis without the use of computers is very difficult, and even using computer softwares requires a long time. Use of the state space averaging method, as will be mentioned, in addition to simplifying the analysis procedure which is a result of converting a time-dependent system to a time-independent one, reduces th...

متن کامل

Analysis of Power Electronic Converters Using the Developed State Space Averaging Method

Power electronic converters are non-linear time-dependent systems whose exact analysis without the use of computers is very difficult, and even using computer softwares requires a long time. Use of the state space averaging method, as will be mentioned, in addition to simplifying the analysis procedure which is a result of converting a time-dependent system to a time-independent one, reduces th...

متن کامل

Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models

MOTIVATION Statistical inference of gene networks by using time-course microarray gene expression profiles is an essential step towards understanding the temporal structure of gene regulatory mechanisms. Unfortunately, most of the current studies have been limited to analysing a small number of genes because the length of time-course gene expression profiles is fairly short. One promising appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009