Uninformative Biological Variability Elimination in Apple Soluble Solids Content Inspection by Using Fourier Transform Near-Infrared Spectroscopy Combined with Multivariate Analysis and Wavelength Selection Algorithm

نویسندگان

  • Lin Zhang
  • Baohua Zhang
  • Jun Zhou
  • Baoxing Gu
  • Guangzhao Tian
چکیده

Uninformative biological variability elimination methods were studied in the near-infrared calibration model for predicting the soluble solids content of apples. Four different preprocessing methods, namely, Savitzky-Golay smoothing, multiplicative scatter correction, standard normal variate, and mean normalization, as well as their combinations were conducted on raw Fourier transform near-infrared spectra to eliminate the uninformative biological variability. Subsequently, robust calibration models were established by using partial least squares regression analysis and wavelength selection algorithms. Results indicated that the partial least squares calibration models with characteristic variables selected by CARS method coupled with preprocessing of Savitzky-Golay smoothing and multiplicative scatter correction had a considerable potential for predicting apple soluble solids content regardless of the biological variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra

Variable (or wavelength) selection plays an important role in the quantitative analysis of near-infrared (NIR) spectra. A modified method of uninformative variable elimination (UVE) was proposed for variable selection in NIR spectral modeling based on the principle of Monte Carlo (MC) and UVE. The method builds a large number of models with randomly selected calibration samples at first, and th...

متن کامل

A Comparison of Linear Regression Methods forthe Detection of Apple Internal Quality by Nearinfrared Spectroscopy

Hybrid linear analysis (HLA), partial least-squares (PLS) regression, and the linear least square support vector machine (LSSVM) were used to determinate the soluble solids content (SSC) of apple by Fourier transform near-infrared (FT-NIR) spectroscopy. The performance of these three linear regression methods was compared. Results showed that HLA could be used for the analysis of complex solid ...

متن کامل

A Comparative Study Concerning Linear and Nonlinear Models to Determine Sugar Content in Sugar Beet by Near Infrared Spectroscopy (NIR)

This paper reports on the use of Artificial Neural Networks (ANN) and Partial Least Squareregression (PLS) combined with NIR spectroscopy (900-1700 nm) to design calibration models for thedetermination of sugar content in sugar beet. In this study a total of 80 samples were used as the calibration set,whereas 40 samples were used for prediction. Three pre-processing methods, including Multiplic...

متن کامل

Measurement of aspartic acid in oilseed rape leaves under herbicide stress using near infrared spectroscopy and chemometrics

Oilseed rape is used as both food and a renewable energy resource. Physiological parameters, such as the amino acid aspartic acid, can indicate the growth status of oilseed rape. Traditional detection methods are laborious, time consuming, costly, and not usable in the field. Here, we investigate near infrared spectroscopy (NIRS) as a fast and non-destructive detection method of aspartic acid i...

متن کامل

Development of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection

The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017