Ultrasonic scatterer structure classification with the generalized spectrum

نویسندگان

  • Kevin D. Donohue
  • Lexun Huang
چکیده

Ultrasonic back-scattered echoes resulting from the structures within a scanned object contain information of potential diagnostic value. The most common nondestructive evaluation (NDE) techniques use large-scale changes in the back-scatterer coefficients to reveal boundaries between materials with different density/elasticity properties or defects in homogenous material regions. Less common techniques consider small-scale scatterer characteristics that give rise to textures and other features not readily seen in the A-scan envelope or intensity image. This paper considers applying the generalized spectrum (GS) for classifying small-scale scatterer structures into three broad categories, diffuse, specular, and regular. The GS distinguishes between stationary (diffuse scattering) and certain classes of nonstationary processes based on a statistical characterization of the phase spectrum, and the GS can be normalized to limit variations due to frequency selectivity of the scatterers and the ultrasonic propagation path. This paper explains how the GS can be applied to classify scatterer structures over small sections of the ultrasonic A-scan and demonstrates its classification performance with simulations. The significance of the approach to NDE applications, such as flaw detection in homogenous material and material characterization in more complex material, is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1

In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...

متن کامل

Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor.

Characterization of tissue microstructure through ultrasonic backscatter is hypothesized to aid in detection and classification of diseased tissues. Radio frequency signals backscattered from tissues can be modeled according to the assumed shape, size, and distribution of scatterers in tissues. Power spectra of rf backscattered signals describe the frequency dependence of scatterers. Experiment...

متن کامل

Assessment of Homodyned K Distribution Modeling Ultrasonic Speckles from Scatterers with Varying Spatial Organizations

Objective This paper presents an assessment of physical meanings of parameter and goodness of fit for homodyned K (HK) distribution modeling ultrasonic speckles from scatterer distributions with wide-varying spatial organizations. Methods A set of 3D scatterer phantoms based on gamma distributions is built to be implemented from the clustered to random to uniform scatterer distributions conti...

متن کامل

Identifying ultrasonic scattering sites from three-dimensional impedance maps.

Ultrasonic backscattered signals contain frequency-dependent information that is usually discarded to produce conventional B-mode images. It is hypothesized that parametrization of the quantitative ultrasound frequency-dependent information (i.e., estimating scatterer size and acoustic concentration) may be related to discrete scattering anatomic structures in tissues. Thus, an estimation techn...

متن کامل

Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media.

Estimations of scattering parameters, such as average scatterer diameter, from rf signals backscattered from random media (tissues) are made from the frequency dependence of the rf signal. The frequency dependence of the rf signal backscattered from the medium is seen in the normalized power spectrum. The normalized power spectrum is found by taking the squared magnitude of the Fourier transfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001