Constrained Approximation with Jacobi Weights

نویسندگان

  • Kirill Kopotun
  • Dany Leviatan
  • Igor Shevchuk
  • K. A. Kopotun
  • D. Leviatan
چکیده

In this paper, we prove that for l = 1 or 2 the rate of best l-monotone polynomial approximation in the Lp norm (1 ≤ p ≤ ∞) weighted by the Jacobi weight wα ,β(x) ∶= (1 + x)α(1 − x)β with α, β > −1/p if p <∞, or α, β ≥ 0 if p =∞, is bounded by an appropriate (l + 1)-st modulus of smoothness with the same weight, and that this rate cannot be bounded by the (l+2)-ndmodulus. Related results on constrained weighted spline approximation and applications of our estimates are also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial approximation with doubling weights having finitely many zeros and singularities

We prove matching direct and inverse theorems for (algebraic) polynomial approximation with doubling weights w having finitely many zeros and singularities (i.e., points where w becomes infinite) on an interval and not too “rapidly changing” away from these zeros and singularities. This class of doubling weights is rather wide and, in particular, includes the classical Jacobi weights, generaliz...

متن کامل

ORTHOGONAL ZERO INTERPOLANTS AND APPLICATIONS

Orthogonal zero interpolants (OZI) are polynomials which interpolate the “zero-function” at a finite number of pre-assigned nodes and satisfy orthogonality condition. OZI’s can be constructed by the 3-term recurrence relation. These interpolants are found useful in the solution of constrained approximation problems and in the structure of Gauss-type quadrature rules. We present some theoretical...

متن کامل

Generalized De La Vallée Poussin Operators for Jacobi Weights

Starting from a natural generalization of the trigonometric case, we construct a de la Vallée Poussin approximation process in the uniform and L norms. With respect to the classical approach we obtain the convergence for a wider class of Jacobi weights. Even if we only consider the Jacobi case, our construction is very general and can be extended to other classes of weights.

متن کامل

Monotone Jacobi parameters and non-Szegö weights

We relate asymptotics of Jacobi parameters to asymptotics of the spectral weights near the edges. Typical of our results is that for an ≡ 1, bn = −Cn−β (0 < β < 2 3 ), one has dμ(x) = w(x) dx on (−2, 2), and near x = 2, w(x) = e where Q(x) = βC 1 β Γ(32 )Γ( 1 β − 1 2 )(2 − x) 1 2 − 1 β Γ( 1 β + 1) (1 +O((2 − x)))

متن کامل

Generalized Jacobi polynomials/functions and their applications

We introduce a family of generalized Jacobi polynomials/functions with indexes α,β ∈ R which are mutually orthogonal with respect to the corresponding Jacobi weights and which inherit selected important properties of the classical Jacobi polynomials. We establish their basic approximation properties in suitably weighted Sobolev spaces. As an example of their applications, we show that the gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015